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Abstract
Motivation: The utilization of single-cell bisulfite sequencing (scBS-seq) methods allows for precise analysis of DNA methylation patterns at the
individual cell level, enabling the identification of rare populations, revealing cell-specific epigenetic changes, and improving differential methyla-
tion analysis. Nonetheless, the presence of sparse data and an overabundance of zeros and ones, attributed to limited sequencing depth and cov-
erage, frequently results in reduced precision accuracy during the process of differential methylation detection using scBS-seq. Consequently,
there is a pressing demand for an innovative differential methylation analysis approach that effectively tackles these data characteristics and
enhances recognition accuracy.

Results: We propose a novel beta mixture approach called scDMV for analyzing methylation differences in single-cell bisulfite sequencing data,
which effectively handles excess zeros and ones and accommodates low-input sequencing. Our extensive simulation studies demonstrate that
the scDMV approach outperforms several alternative methods in terms of sensitivity, precision, and controlling the false positive rate. Moreover,
in real data applications, we observe that scDMV exhibits higher precision and sensitivity in identifying differentially methylated regions, even
with low-input samples. In addition, scDMV reveals important information for GO enrichment analysis with single-cell whole-genome sequencing
data that are often overlooked by other methods.

Availability and implementation: The scDMV method, along with a comprehensive tutorial, can be accessed as an R package on the following
GitHub repository: https://github.com/PLX-m/scDMV.

1 Introduction

Epigenetics explores heritable changes in gene expression in-
dependent of DNA sequence alterations (Dupont et al. 2009).
Key epigenetic modifications such as DNA methylation, his-
tone modification, promoter–enhancer interaction, and non-
coding RNA regulation play crucial roles and can contribute
to diseases (Allis and Jenuwein 2016, Chen et al. 2017).
Among these modifications, DNA methylation has gained sig-
nificant attention due to its reversible nature and potential as
a therapeutic target (Baylin and Jones 2011, Ahuja et al.
2014, Maresca and Wismayer 2016, Mohamad et al. 2019).
In mammals, DNA methylation primarily occurs at CpG sites,
where the fifth carbon atom of cytosine is methylated by
DNA methyltransferase, resulting in 5-methylcytosine (Bird
1987, Kulis and Esteller 2010). CpG sites can be dispersed
throughout the DNA sequence or concentrated in CpG

islands within regulatory regions (Hodges et al. 2009).
Understanding DNA methylation is essential in elucidating its
impact on cell development, disease progression, and gene
regulation (Takai and Jones 2002, Das and Singal 2004,
Altun et al. 2010, Bock et al. 2012, Smith and Meissner 2013,
Khavari et al. 2014, Sheaffer et al. 2014, Stelzer et al. 2016,
Koch et al. 2018).

Analyzing differential DNA methylation between samples
is crucial for understanding disease etiology, aiding in disease
prevention and diagnosis. Two common approaches for dif-
ferential methylation analysis are differentially methylated
site (DMS) analysis and differentially methylated region
(DMR) analysis. DMS analysis focuses on individual methyla-
tion sites within a single sample and is less directly linked to
gene expression. In contrast, DMR analysis considers contigu-
ous regions comprising one or more DMSs and allows for
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comparisons across multiple sample groups, providing more
insights into gene expression.

In recent years, there has been a proliferation of
sequencing-based methods for identifying differential methyl-
ation. These methods incorporate a wide range of approaches
such as logistic regression, beta-binomial distribution, hidden
Markov models, Shannon entropy, and binary segmentation
smoothing. Existing algorithms include “eDMR” (2013) (Li
et al. 2013), “RADMeth” (2014) (Dolzhenko and Smith
2014), “BSmooth” (2014) (Hansen et al. 2012), and
“CGmapTools” (2018) (Guo et al. 2018).

The use of traditional strategies for studying DNA methyla-
tion diversity is limited when relying on averaged data from
multiple cells. Single-cell whole-genome bisulfite sequencing
(scWGBS and scRRBS) has emerged as a promising approach
to assess DNA methylation diversity in individual cells and
rare cell types. However, the sparsity and unique characteris-
tics of single-cell DNA methylation sequencing data, including
low coverage and excess zeros and ones (e.g. the sum of the
methylation rates at 0 and 1 exceeds 0.9 in the real example
of Section 2.4), render traditional statistical methods inade-
quate. Therefore, novel methods are needed to perform differ-
ential methylation analysis using scBS-seq data.

In this paper, we propose a strategy called scDMV (zero–
one inflated beta mixture model) for analyzing single-cell bi-
sulfite data. We assume that the scBS-seq data, conditioned
on the cell and region-specific effect representing the methyla-
tion rate, follow a binomial distribution. In addition, we
model the effect distribution using a zero–one inflated beta
distribution to account for the excess of zeros and ones, as
well as the over-dispersion observed in scBS-seq data. We em-
ploy the EM algorithm to estimate the model parameters and
utilize the Wald test for conducting differential methylation
analysis. We compare the performance of scDMV with two
existing methods, methylpy and CGmapTools, through nu-
merical studies including simulation experiments and real
data applications. The results demonstrate the superior per-
formance of scDMV, particularly in capturing important in-
formation for GO enrichment analysis using single-cell
whole-genome sequencing data.

2 Materials and methods

The observed scBS-seq data consist of a collection denoted by

ngij;xgijð Þ; g ¼ 1; 2; i ¼ 1; . . . ;Ng; j ¼ 1; . . . ;M;

where ngij represents the total reads obtained from the ith cell
of type g in region j, xgij represents the methylation reads ac-
quired from the ith cell of type g in region j, g corresponds to
the cell type; Ng indicates the number of cells belonging to
type g, i represents the samples or cells, j pertains to different
CG regions, and M represents the total number of CG seg-
ments considered.

Let pgj represents the methylation rate of cells belonging to
type g in region j. We define Pg as the vector of methylation
rates for type g cells, given by Pg ¼ pg1; . . . ;pgMð ÞT . The pri-
mary objective of differential methylation analysis is to exam-
ine whether the null hypothesis of equal average methylation
levels between two methylation rate vectors holds. The alter-
native hypothesis, denoted as H1, suggests the presence of
specific regions, denoted as m 2 1; . . . ;Mf g, where the aver-
age methylation rates differ between the two cell types. To

address this hypothesis testing problem, we first construct a
test statistic. Subsequently, we develop a procedure to identify
the set of DMRs.

2.1 Formulating the model and test statistic

Given the total reads ngij, it is reasonable to assume that the
count of methylation reads xgij follows a binomial distribu-
tion, which can be expressed as:

P xgijjngij; pgj
� �

¼ ngij

xgij

� �
pxgij

gj ð1� pgjÞngij�xgij ;

where pgj represents the methylation rate of cells of type g in
region j. It is important to note that the methylation rate of
cells shows significant heterogeneity, often characterized by
an excess of zeros and ones. To capture this variability, we
model pgj as a random effect and define its mean as
Epgj ¼ lgj. For each region j, we test the hypothesis

H0j : l1j ¼ l2j versus Haj : l1j 6¼ l2j:

Let xgj ¼
Png

i¼1
xgij, xj ¼

P2
g¼1

xgj, ngj ¼
Png

i¼1
ngij and nj ¼

P2
g¼1

ngj.

Given the observation that the DNA methylation rate pgj in
single cells tends to concentrate around values of 0 and 1, we
assume that pgj follows a mixed beta distribution with 0–1 in-
flation. This distribution can be characterized as follows:

f ðpgjÞ ¼
pgj0; pgj ¼ 0
pgj1; pgj ¼ 1

1� pgj0 � pgj1
� �

Beta agj;bgj
� �

; pgj� 0; 1ð Þ:

8><
>:

Within this model, the assessment of differential methylation
expression between two types of samples reduces to the exam-
ination of:

Ĥ0j : ðp1j0;p1j1; a1j; b1jÞT ¼ ðp2j0; p2j1; a2j;b2jÞT :

It is important to emphasize that the four parameters associ-
ated with the two types of samples can vary across CG
regions j. Now, let us proceed to derive the algorithm for esti-
mating these parameters. For a given value of g and j, we cal-
culate the likelihood function and utilize the EM algorithm to
estimate the parameter hg ¼ pgj0; pgj1; agj; bgj

� �
. The infor-

mation matrix I pgj0; pgj1; agj; bgj
� �

takes the form

E

@2logL
@p2

gj0

@2logL
@pgj0@pgj1

@2logL
@pgj1@pgj0

@2logL
@p2

gj1

0 0
0 0

0 0
0 0

@2logL
@a2

gj

@2logL
@agj@bgj

@2logL
@bgj@agj

@2logL

@b2
gj

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

and the expected value of the methylation rate of the type g
cells in region j
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g hg
� �

¼ Epgj ¼ pgj1 þ 1� pgj0 � pgj1
� � agj

agj þ bgj
:

Under the null hypothesis, the resulting Wald test statistic

T ¼ g ĥ1

� �
� g ĥ2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@g h1ð Þ
@h1

� �T
I h1ð Þ @g h1ð Þ

@h1
þ @g h2ð Þ

@h2

� �T
I h2ð Þ @g h2ð Þ

@h2

r (1)

asymptotically follows a standard normal distribution. In
summary, the test statistic is derived based on Equation (1),
and the flow chart in Fig. 1 illustrates the scDMV method.

2.2 DMR identification

Next, we evaluate all M regions to obtain M P-values. Regions
with P-values below the specified cutoff are considered signifi-
cantly different and classified as DMRs. Subsequently, com-
monly used methods leverage the DNA methylation differences
among samples to refine the initially obtained DMRs for en-
hanced accuracy. In our study, the weighted DNA methylation
is employed to calculate the methylation degree difference,
denoted as D, between the two types of samples within each re-
gion. A cutoff value is then set for D, and the final DMRs must
satisfy the condition that D exceeds the cutoff. Generally, the
DMRs identified by the model are those regions with P-values
below the P-value cutoff and D exceeding the D cutoff.

2.3 Simulation study

The existing methods, CGmapTools and methylpy, are specif-
ically designed to analyze differences in cell clusters formed
by a large number of cells using traditional bisulfite sequenc-
ing technologies. Consequently, they may not be directly ap-
plicable to single-cell data. In contrast, the novel statistical

method proposed in this study, called scDMV, takes into ac-
count the specific characteristics of low coverage and depth in
scBS-seq sequencing data. To assess and compare the perfor-
mance of CGmapTools, methylpy, and the new scDMV
method in identifying DMRs in single-cell DNA methylation
data, we conducted several simulation experiments based on
simulated scBS-seq data.

We generated a simulated dataset consisting of 73 samples,
with two distinct cell types having sample sizes of 48 and 25,
respectively. Each sample comprised 10 000 sites, where each
site had methylation reads represented by x and total reads
denoted by n. The dataset was divided into 1000 regions,
with every 10 consecutive sites forming a region. The data
simulation process involved three main steps. Firstly, we
assigned values to the four parameters ðp10; p11; a1;b1Þ and
ðp20; p21; a2;b2Þ for the two sample types. Secondly, we
obtained simulated total reads based on the actual total reads.
Finally, the simulated methylation reads were generated
according to the underlying theoretical model.

To illustrate the process of generating simulated data, we
consider a specific region as an example. Firstly, we generate
the simulated total reads data, denoted as n, by randomly
sampling 10 nonzero values from each column in the true to-
tal read data. Subsequently, the methylation reads x for that
region are generated based on the prior distribution men-
tioned earlier. By following this procedure, we obtain the sim-
ulated data for a particular region.

The aforementioned process is repeated 1000 times to gen-
erate simulation data for 1000 regions. The methylation reads
x and total reads n data for each region are stored in separate
lists, resulting in a collection of 1000 lists. These 1000 lists
are then combined into a single comprehensive list, represent-
ing the final simulation data. The sum of the methylation rates
at 0 and 1 in the simulated data is �0.66.

Two types of simulation experiments were conducted: dif-
ference experiments and indifference experiments. In the dif-
ference experiments, the parameter values ðp10; p11; a1;b1Þ
and ðp20;p21; a2;b2Þ were deliberately set to be different,
resulting in simulated data that exhibited differences between
the groups. On the other hand, in the indifference experi-
ments, ðp10;p11; a1; b1Þ and ðp20;p21; a2;b2Þ were set to be ex-
actly the same, generating simulated data with no group
differences. For each type of experiment, five sets of experi-
mental data were simulated.

To assess the comparative accuracy of the scDMV method
in identifying DMRs, we conducted simulation experiments
and compared its performance with methylpy and
CGmapTools. The regional average methylation level of a sam-
ple group was defined as the ratio of the sum of methylation
reads to the sum of total reads for all sites in that region across
all samples within the group. The difference in methylation
level, denoted as D, represented the disparity in regional aver-
age methylation levels between the two sample groups within
the same region. For each method, P-values and D values were
calculated for each region separately. We employed different
cutoff values for the P-value (0.001, 0.005, 0.01, and 0.05) and
D (0, 0.1, 0.15, and 0.2). Regions satisfying both the P-value
not exceeding the specified cutoff and D surpassing the defined
threshold were considered as identified DMRs.

2.4 Real data applications

To explore the methylation patterns during early embryonic
development, we employed the scDMV method on a publicly

Figure 1. Flowchart of scDMV. The flowchart represents the scDMV

method, comprising the following steps: (A) data input and preprocessing,

(B) apply the propose model, (C) parameter estimation, (D) hypothesis

testing, and (E) calculate the corresponding P-value and D and compare

with the cutoffs.
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available dataset (Benjamini and Hochberg 1995) and com-
pared its outcomes with two alternative methods.

2.4.1 Design of real data experiments
The dataset (GEO ID: GSE81233) consists of 73 samples
from two consecutive developmental stages, comprising 25 4-
cell samples and 48 8-cell samples. Both within-group and
between-group experiments were conducted. In the between-
group experiment, which involved samples with differences,
we utilized all 73 samples to identify DMRs between the 25
4-cell embryo samples and the 48 8-cell embryo samples. The
experimental results from the three methods were obtained by
applying various P-value cutoffs and different thresholds for
the difference in DNA methylation level (D). In the within-
group experiment, where there were no sample differences,
we selected 40 out of the 48 8-cell embryo samples and
equally divided them into two groups to identify DMRs. Since
the overall methylation patterns tend to remain stable across
samples of the same developmental stage (Benjamini and
Hochberg 1995), there should be no individual variations in
methylation between the two groups. Consequently, the iden-
tified DMRs in this scenario can be considered as false-
positive DMRs.

In order to enhance the accuracy of identifying DMRs, we
performed data preprocessing and filtering procedures.
Initially, we assessed the significance of each site to determine
its impact on the region. Sites with a missing value exceeding
50% of the total number of samples were excluded. After site
filtering, the data were segmented into regions with a maxi-
mum length of 300 bp, ensuring that each region contained a
minimum of 3 sites. Following the aforementioned data orga-
nization approach, each region was represented by two lists:
one for the total reads data and another for the methylation
reads data. All regions of each chromosome were stored as a
collective list called “testRegion,” thereby forming a list for
each chromosome. Subsequently, the data within
“testRegion” were utilized for conducting experiments using
the scDMV method. During the experiments, we employed a
weighted approach to calculate the regional methylation lev-
els. We executed the experiments on each chromosome, gen-
erating P-values and D values for each region. Finally, we
applied the cutoffs defined earlier to filter the regions
accordingly.

In the final step, we combined the outcomes from both
experiments to conduct a comprehensive analysis and com-
parison of the three methods, thereby assessing the perfor-
mance of the scDMV method in identifying DMRs.

2.4.2 Annotation of DMRs
The DMRs identified between the 8-cell stage and 4-cell stage
were annotated using the ChIPSeeker R package (version
1.24.0) (Yu et al. 2015), based on their corresponding regions
in the human genome (hg19). The annotation process in-
volved classifying the DMRs based on their locations relative
to gene transcription, including promoter regions (within 2 kb
from the Transcription Start Site or TSS), introns, exons, and
intergenic regions. In addition, the DMRs were annotated
based on their association with CpG islands, CpG shores
(within 2 kb from an island), CpG shelves (within 2 kb from a
shore), and the open sea (outside of the previous three
regions). The annotation information for CpG islands was
obtained from the UCSC Genome Browser website (http://ge
nome.ucsc.edu) (Karemaker and Vermeulen 2018).

2.4.3 Functional enrichment analysis
Enriched Gene Ontology (GO) terms were identified utilizing
the Metascape software (http://metascape.org) (Karolchik
et al. 2003). The gene list for functional enrichment analysis
consisted of genes that contained DMRs within their pro-
moters (within 2 kb from TSS) and/or gene bodies. For the
GO enrichment analysis, only the terms associated with
“biological process” were selected. P-values were adjusted for
multiple comparisons using the Benjamini–Hochberg method
to control the false discovery rate (FDR) (Zhou et al. 2019).

3 Results

3.1 Assessing the overall performance of scDMV

In the difference experiments, all 1000 regions in the simu-
lated data are designated as DMRs, while in the indifference
experiments, all 1000 regions exhibit indifferent methylation.
To ensure the validity of the simulated data, we compared its
distribution with that of real data (specifically, the data from
chromosome 1 in scBS-seq), as depicted in Supplementary
Fig. S1 of the Supplementary Appendix. The figure leads to
the following observations: (i) both the simulated data and
the real data exhibit an inflated range of 0–1; (ii) the distribu-
tion of the simulated data closely aligns with that of the real
data.

We assess the collective performance of scDMV and con-
trasting algorithms (Methylpy, CGmapTools) by analyzing
averaged results from five simulation experiments. The out-
comes at a P-value cutoff of 0.01 are illustrated in Table 1,
while comprehensive results from all five experiments can be
found in Supplementary Tables S1–S3 of the Supplementary
Appendix.

In the simulation experiments, we evaluate the algorithms
using sensitivity and precision as performance metrics.
Sensitivity is calculated as the ratio of the number of regions
with a P-value not exceeding the defined cutoff to the total
number of regions in the difference experiments. Precision, on
the other hand, is determined by the ratio of the number of
DMRs identified in the difference experiments to the total
number of DMRs identified across all experiments.

To visualize the results, we plot the outcomes of the five
experiments for each method at various cutoff points, with
FDR represented on the horizontal axis and sensitivity on the
vertical axis. Supplementary Figure S2 of the Supplementary
Appendix illustrates this graph, where the black vertical line
corresponds to an FDR of 0.005, indicating statistical signifi-
cance when the FDR is below this threshold.

Table 1. Simulation results.

Method scDMV CGmapTools methylpy

P�0.01
D�0

Difference 864 549 999
Indifference 1 10 999

D�0.1
Difference 595 531 721
Indifference 0 8 9

D�0.15
Difference 279 221 181
Indifference 0 1 0

D�0.2
Difference 90 21 7
Indifference 0 0 0
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By examining the graph, it becomes evident that the
scDMV algorithm consistently exhibits higher sensitivity in
controlling Type I errors, particularly when D (the difference
in methylation level) is 0 or greater. Furthermore, scDMV
demonstrates superior precision compared to the other two
algorithms, maintaining high sensitivity across multiple cutoff
points for D, specifically at 0, 0.1, and 0.15.

In addition, we present precision boxplots for the three
methods, depicted in Supplementary Fig. S3 of the
Supplementary Appendix. As observed in Supplementary Fig.
S3A, scDMV consistently attains higher precision compared
to the other two methods, regardless of the screening condi-
tions. Notably, the precision remains above 0.98 for scDMV
across all scenarios.

Apart from sensitivity and precision, researchers commonly
evaluate the false positive rate (FPR) of algorithms.
Supplementary Figure S3B presents the FPR box plot for the
three methods, clearly demonstrating that scDMV consis-
tently maintains a lower false positive rate compared to the
other two methods. Notably, the false positive rate of meth-
ylpy is notably high, which could potentially be attributed to
the experimental principles underlying this method.

Based on the simulation results, the following conclusions
can be drawn: scDMV demonstrates exceptional precision
and sensitivity hen identifying DMRs in single-cell data. In
summary, the aforementioned simulation results indicate that
the scDMV method surpasses the other two methods in accu-
rately detecting DNA methylation differences in single-cell bi-
sulfite sequencing data.

3.2 scDMV exhibiting superior precision in the

analysis of real data

In evaluating the performance of scDMV, we utilize precision
as the evaluation criterion. Precision is defined as the propor-
tion of correctly detected DMRs among all the identified
DMRs. In the aforementioned experiments, we assume that
the DMRs detected in the between-group experiments are all
correctly identified, while the DMRs detected in the within-
group experiments are all misidentified. As a result, we define
true positives (TP0) as the number of DMRs identified in the
between-group experiments (the first experiment), and false
positives (FP0) as the number of DMRs found in the within-
group experiments (the second experiment). Hence, precision
can be calculated using the following formula:

P
0 ¼ TP

0

TP0 þ FP0
¼ TP

0

4c8c

TP04c8c þ FP08c8c

After data processing, the first experiment yields a total of
11 083 regions, while the second experiment results in 13 193
regions. We set P-value cutoffs at 0.001, 0.005, 0.01, and
0.05, along with D cutoffs at 0.1, 0.15, and 0.2.
Consequently, we obtain experimental results for the three
methods under different thresholds (refer to Supplementary
Table S4 of the Supplementary Appendix for complete experi-
mental results).

The results indicate that as the threshold becomes more
stringent, the precision of both CGmapTools and scDMV
methods gradually decreases, while the precision of the meth-
ylpy method remains relatively stable. Concretely, when the
cutoffs of P-value are set to 0.001, 0.005, and 0.01 the
scDMV method consistently maintains a precision level above
0.71, whereas the other two methods fail to reach a precision

of 0.66. When we set P-value cutoff at 0.05, the precision of
scDMV decreases, but it is still higher than 0.65, while the
precision of two corresponding methods is lower than 0.59.
When comparing the results across different thresholds,
scDMV consistently exhibits higher precision compared to
the other two methods. In other words, scDMV can identify a
greater number of DMRs while ensuring fewer misidentified
regions.

3.3 Characterization of regions with differential

methylation

In order to accurately characterize the DMRs between the 8-
cell stage and 4-cell stage, a stringent threshold was applied,
selecting DMRs based on P-values � 0.001 and D � 0.2. As a
result, a total of 1457 DMRs were identified across the entire
genome. Among these DMRs, 1446 (99.25%) exhibited
hypermethylation in 8-cell embryos (Fig. 2A). This observa-
tion is consistent with previous studies that have reported a
significant increase in global DNA methylation levels in 8-cell
embryos compared to 4-cell embryos (Benjamini and
Hochberg 1995, Zhu et al. 2018).

To investigate the genomic distribution of DMRs, we
employed the clusterProfiler package (Hanna et al. 2016) to
annotate regions based on the human hg19 reference genome.
The analysis revealed that a significant portion of the DMRs
(49.69%) between consecutive developmental stages were sit-
uated within intronic regions of transcripts (Fig. 2B). In addi-
tion, 11.94% of the DMRs were identified in promoter
regions, which is consistent with the association of promoter
methylation with transcriptional silencing (Siegfried et al.
1999, Yu et al. 2012). It is worth noting that similar patterns
of genome distribution for DMRs were observed when com-
paring the scDMV method with the other two methods
(Fig. 2D).

Furthermore, a notable proportion (4.95%) of the DMRs
detected by the scDMV tool were found to be located within
CpG islands (Fig. 2C), which aligns with the genomic distri-
bution of DMRs identified by the CGmapTools tool (Fig. 2E).
In contrast, the DMRs identified by methylpy exhibited a
greater preference for regions with high CpG density, such as
CpG islands (9.02%) and CpG shores (14.7%) (Fig. 2E). This
bias in methylpy’s DMR identification process, which
involves first identifying differentially methylated sites and
then merging them into DMRs, may contribute to this obser-
vation. It is possible that methods like scDMV, which directly
define candidate methylated regions, achieve higher accuracy
by avoiding such biases (Baylin 2005).

3.4 scDMV effectively capturing crucial information

that is overlooked by CGmapTools

Due to the high false positive rate associated with the meth-
ylpy method, we focused our comparison on the scDMV and
CGmapTools methods. Among them, scDMV reported a total
of 1457 DMRs, while CGmapTools reported 535 DMRs.
Notably, scDMV captured 512 (95.7%) of the DMRs identi-
fied by CGmapTools, as depicted in Fig. 3A (Left).
Furthermore, at the gene level, there was a substantial overlap
of 308 genes between the DMRs identified by both methods,
as illustrated in Fig. 3A (Right). Overall, scDMV provided a
significantly greater amount of information, capturing nearly
all of the DMRs reported by CGmapTools.

Given that scDMV identified a larger number of DMR-
genes (417) compared to CGmapTools, it becomes intriguing
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to conduct functional annotation on the different DMR-genes
present in the two gene lists. Through GO enrichment analy-
sis, it was revealed that the shared DMR-genes exhibited sig-
nificant enrichment in functions related to developmental
regulation, such as the regulation of anatomical structure size
and small GTPase-mediated signal transduction (Fig. 3B).
In contrast, the specific DMR genes identified by scDMV
were highly enriched in processes involving protein

phosphorylation and regulation of nervous system develop-
ment (Fig. 3B). Notably, previous studies have shown that
phosphorylation dynamics play a dominant role in the regu-
lated proteome during early development, and phosphory-
lated proteins in 8-cell embryos are associated with post-
translational mechanisms (Bloom and McConnell 1990,
Jühling et al. 2016, Peuchen et al. 2017). The functional en-
richment of DMR-genes suggests that DNA methylation

Figure 2. Global analysis of DMRs between 8-cell and 4-cell stages: (A) distribution of hyper-DMRs and hypo-DMRs . (B) Genomic location distribution of

DMRs, including UTRs. (C) DMR distribution relative to CpG islands. (D) Genomic location fractions of DMRs identified by three methods. (E) CpG island-

related location fractions of DMRs identified by three methods.

Figure 3. Comparison of whole-genome DMRs between single-cell WGBS methods (scDMV versus CGmapTools): (A) left: Venn diagram depicting the

overlap of detected DMRs between scDMV and CGmapTools. Right: Venn diagram showing the overlap of detected DMR-genes between scDMV and

CGmapTools. (B) GO enrichment analysis conducted on shared DMR-genes and specific DMR-genes identified by scDMV and CgmapTool.
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changes in genes related to protein phosphorylation may play
a crucial role in embryo development, particularly during the
8-cell stage. These findings provide valuable insights into the
DNA methylome dynamics between consecutive developmen-
tal stages.

To summarize, the scDMV method successfully captured
nearly all of the DMRs identified by CGmapTools. In addi-
tion, scDMV revealed a broader range of significant biologi-
cal events compared to CGmapTools, indicating its ability to
provide more comprehensive insights.

4 Discussion

The scDMV method utilizes a zero–one inflated beta mixture
model to detect DMRs in single-cell sequencing data, effec-
tively handling excess zeros and ones. It demonstrates high ac-
curacy in identifying DMRs, as shown in simulation
experiments and real data analysis. The genes identified as
DMRs by scDMV are involved in important functions, such
as histone H3-K9 demethylation and regulation of the Wnt
signaling pathway.

scDMV addresses challenges posed by low coverage and
low depth in single-cell data, providing a reliable approach
for DMR detection in single-cell methylation samples.
Compared to existing tools, scDMV improves DMR identifi-
cation accuracy. CGmapTools utilizes a dynamic fragment
strategy, offering speed and low false positive rate but detect-
ing fewer DMRs. On the other hand, the methylpy method
lacks flexibility in P-value cutoffs and requires time-
consuming multiple experiments.

scDMV combines the strengths of CGmapTools and meth-
ylpy, employing a similar dynamic fragmentation strategy
and enabling DMR filtering based on user-defined thresholds.
It achieves higher precision and detects more DMRs.
However, the region division process in scDMV requires im-
provement in terms of running speed.

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

None declared.

Funding

This work was supported by the National Natural Science
Foundation of China [12071305, 12371295] and Natural
Science Foundation of Guangdong Province of China
[2023A1515011399] to Y.Z.; The Hong Kong Research
Grant Council [17308820] to J.X.; the National Key
Research and Development Program of China
[2021YFC2501005] and the National Natural Science
Foundation of China [82172882] to J.S.; and the National
Natural Science Foundation of China [12222112], Project of
Educational Commission of Guangdong Province
[2023ZDZX1017], Shenzhen Science and Technology
Program [RCJC20221008092753082] to Y.H; the Department
of Science and Technology of Guangdong Province (EF020/
FBA-SLJ/2022/GDSTC) and the University of Macau Research
Committee (MYRG2022-00017-FBA) to L. S. The data

underlying this article will be shared on reasonable request to
the corresponding author.

References

Ahuja N, Easwaran H, Baylin SB et al. Harnessing the potential of epige-
netic therapy to target solid tumors. J Clin Invest 2014;124:56–63.

Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control.
Nat Rev Genet 2016;17:487–500.

Altun G, Loring JF, Laurent LC et al. DNA methylation in embryonic
stem cells. J Cell Biochem 2010;109:1–6.

Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin
Pract Oncol 2005;2:S4–11.

Baylin SB, Jones PA. A decade of exploring the cancer epigenome biologi-
cal and translational implications. Nat Rev Cancer 2011;11:726–34.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practi-
cal and powerful approach to multiple testing. J R Stat Soc Ser B
(Methodological) 1995;57:289–300.

Bird AP. CpG islands as gene markers in the vertebrate nucleus. Trends
Genet 1987;3:342–7.

Bloom T, McConnell J. Changes in protein phosphorylation associated
with compaction of the mouse preimplantation embryo. Mol Reprod
Dev 1990;26:199–210.

Bock C, Beerman I, Lien W-H et al. DNA methylation dynamics during
in vivo differentiation of blood and skin stem cells. Mol Cell 2012;
47:633–47.

Chen Z, Li S, Subramaniam S et al. Epigenetic regulation: a new frontier
for biomedical engineers. Annu Rev Biomed Eng 2017;19:195–219.

Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004;22:
4632–42.

Dolzhenko E, Smith AD. Using beta-binomial regression for high preci-
sion differential methylation analysis in multifactor whole-genome
bisulfite sequencing experiments. BMC Bioinformatics 2014;15:215.

Dupont C, Armant DR, Brenner CA et al. Epigenetics: definition, mecha-
nisms and clinical perspective. Semin Reprod Med 2009;27:351–7.

Guo W, Zhu P, Pellegrini M et al. CGmapTools improves the precision
of heterozygous SNV calls and supports allele-specific methylation
detection and visualization in bisulfite sequencing data.
Bioinformatics 2018;34:381–7.

Hanna CW, Pe~naherrera MS, Saadeh H et al. Pervasive polymorphic
imprinted methylation in the human placenta. Genome Res 2016;
26:756–67.

Hansen KD, Langmead B, Irizarry RA et al. BSmooth: from whole ge-
nome bisulfite sequencing reads to differentially methylated regions.
Genome Biol 2012;13:R83.

Hodges E, Smith AD, Kendall J et al. High definition profiling of mam-
malian DNA methylation by array capture and single molecule bisul-
fite sequencing. Genome Res 2009;19:1593–605.

Jühling F, Kretzmer H, Bernhart SH et al. metilene: fast and sensitive
calling of differentially methylated regions from bisulfite sequencing
data. Genome Res 2016;26:256–62.

Karemaker ID, Vermeulen M. Single-cell DNA methylation profiling:
technologies and biological applications. Trends Biotechnol 2018;
36:952–65.

Karolchik D, Baertsch R, Diekhans M et al.; University of California
Santa Cruz. The UCSC genome browser database. Nucleic Acids Res
2003;31:51–4.

Khavari DA, Sen GL, Rinn JL et al. DNA methylation and epigenetic
control of cellular differentiation. Cell Cycle 2014;9:3880–3.

Koch A, Joosten SC, Feng Z et al. Analysis of DNA methylation in can-
cer: location revisited. Nat Rev Clin Oncol 2018;15:459–66.

Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010;70:
27–56.

Li S, Garrett-Bakelman FE, Akalin A et al. An optimized algorithm for
detecting and annotating regional differential methylation. BMC
Bioinformatics 2013;14:S10.

Maresca G, Wismayer PS. DNA methylation and cancer: identifying and
targeting epigenetic modifications may be the future of cancer ther-
apy. Gulf J Oncol 2016;1:77–83.

scDMV 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/1/btad772/7492658 by guest on 17 January 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad772#supplementary-data


Mohamad HS, Wenli S, Qi C et al. DNA methylation as the most impor-
tant content of epigenetics in traditional chinese herbal medicine. J
Med Plants Res 2019;13:357–69.

Peuchen EH, Cox OF, Sun L et al. Phosphorylation dynamics dominate
the regulated proteome during early xenopus development. Sci Rep
2017;7:15647–2322.

Sheaffer KL, Kim R, Aoki R et al. DNA methylation is required for the
control of stem cell differentiation in the small intestine. Genes Dev
2014;28:652–64.

Siegfried Z, Eden S, Mendelsohn M et al. DNA methylation represses
transcription in vivo. Nat Genet 1999;22:203–6.

Smith ZD, Meissner A. DNA methylation: roles in mammalian develop-
ment. Nat Rev Genet 2013;14:204–20.

Stelzer Y, Wu H, Song Y et al. Parent-of-Origin DNA methylation dy-
namics during mouse development. Cell Rep 2016;16:3167–80.

Takai D, Jones PA. Comprehensive analysis of CpG islands in human
chromosomes 21 and 22. Proc Natl Acad Sci USA 2002;99:3740–5.

Yu G, Wang L-G, Han Y et al. clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS 2012;16:284–7.

Yu G, Wang L-G, He Q-Y et al. ChIPseeker: an R/bioconductor package
for ChIP peak annotation, comparison and visualization.
Bioinformatics 2015;31:2382–3.

Zhu P, Guo H, Ren Y et al. Single-cell DNA methylome sequencing of
human preimplantation embryos. Nat Genet 2018;50:12–9.

Zhou Y, Zhou B, Pache L et al. Metascape provides a biologist-oriented
resource for the analysis of systems-level datasets. Nat Commun
2019;10:1523–10.

8 Zhou et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/1/btad772/7492658 by guest on 17 January 2024


	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Supplementary data
	Conflict of interest
	Funding
	References


