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Abstract

This paper aims to find an approximate true sparse solution of an under-
determined linear system. For this purpose, we propose two types of
iterative thresholding algorithms with the continuation technique and
the truncation technique respectively. We introduce a notion of limited
shrinkage thresholding operator and apply it, together with the restricted
isometry property, to show that the proposed algorithms converge to
an approximate true sparse solution within a tolerance relevant to the
noise level and the limited shrinkage magnitude. Applying the obtained
results to nonconvex regularization problems with SCAD, MCP and ℓp
penalty (0 ≤ p ≤ 1) and utilizing the recovery bound theory, we establish
the convergence of their proximal gradient algorithms to an approximate
global solution of nonconvex regularization problems. The established
results include the existing convergence theory for ℓ1 or ℓ0 regularization
problems for finding a true sparse solution as special cases. Preliminary
numerical results show that our proposed algorithms can find approxi-
mate true sparse solutions that are much better than stationary solutions
that are found by using the standard proximal gradient algorithm.
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1 Introduction

Consider the following underdetermined linear system of variable x:

b = Ax + ε, (1)

where A ∈ Rm×n (m ≪ n) is a linear transformation matrix, b ∈ Rm is an
observation vector with an unknown noise ε ∈ Rm. The sparsity of vector
x ∈ Rn is defined to be the number of nonzero components of x, denoted
as the ℓ0 quasi-norm ∥x∥0. Sparse optimization, which has wide applications
in compressive sensing, image science, systems biology, and machine learning,
aims to find a true s-sparse solution x̄ of (1) satisfying ∥x̄∥0 = s, where s
is a (small) positive integer. To do this, one popular way is to consider the
following composite optimization problem

min
x∈Rn

1

2
∥Ax− b∥2 + λφ(x), (2)

where φ : Rn → R is a (sparsity promoting) penalty function and λ > 0 is a
regularization parameter.

When φ(x) is the convex ℓ1 penalty, (2) is called the ℓ1 regularization prob-
lem, also named as Lasso in statistics and basis pursuit in compressive sensing.
Benefiting from the convexity property, a great deal of attention has been
attracted to explore theoretical properties [1–3] and develop numerical algo-
rithms [4–7] for the ℓ1 regularization problem. However, it has been revealed by
extensive theoretical and empirical studies that the ℓ1 regularization problem
endures significant estimation bias when components of the solution have large
magnitude; and the solution induced from the ℓ1 regularization problem may
be much less sparse than the true sparse one; see, e.g., [8–11]. Therefore, there
is a great demand for developing alternative sparsity promoting techniques
that enjoy nice theoretical property and better numerical performance.

Recently, breakthrough developments have been achieved by virtue of
nonconvex regularization methods. Popular nonconvex sparsity promoting
penalties include the smoothly clipped absolute deviation (SCAD) [9], mini-
max concave penalty (MCP) [12], and the ℓp penalty with p ∈ (0, 1) [13]. It
is worth noting that all these three types of regularization problems belong to
the class of multimodal functions, which have multiple (local) optima, see [14].
It has been shown by several studies that the SCAD and MCP can ameliorate
the bias of the ℓ1 penalty [9, 12], and the ℓp regularization, in particular when
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p = 1
2 , admits a significantly stronger sparsity promoting capability than the

ℓ1 regularization in the sense that it allows to obtain a more sparse solution
from fewer linear measurements than that required by the ℓ1 regularization;
see, e.g., [8, 10, 11]. Motivated by these significant advantages, tremendous
efforts have been devoted to the development of theoretical properties and opti-
mization algorithms of the nonconvex regularization problem. It was shown in
[1, 10, 15–17] that problem (2) with certain sparse penalties obeys the recov-
ery bound between a true solution of (1) and a global solution of (2) under
some regularity conditions. A major challenge of the nonconvex regularization
problem is the computational issue as it is intractable to find a global solution
of a general nonconvex optimization problem. It is worth noting that second-
order optimality conditions of a global solution for nonconvex and nonsmooth
penalty problems have been studied in [18, 19].

In sparse optimization, the class of iterative thresholding algorithms (ITA)
is one of the most popular and practical numerical algorithms with a simple
formulation and a low computational complexity for solving the (convex or
nonconvex) regularization problems; see [5, 10, 11, 20, 21, 23] and references
therein. The idea of the ITA stems from the first-order optimization algorithms
for solving the regularization problem (2). For example, the iterative soft (resp.,
hard, half) thresholding algorithm can be understood as the proximal gradient
algorithm (PGA) for solving the ℓ1 (resp., ℓ0, ℓ1/2) regularization problem; see
[5, 11, 20] respectively. However, limited by the difficulty of nonconvexity of
problem (2), the convergence theory of its PGA is still far from satisfactory:
only convergence to a stationary point of problem (2) is established under the
framework of the Kurdyka- Lojasiewicz theory [24, 25].

Two acceleration strategies that have been widely applied in the design of
ITAs are: the continuation technique and the truncation technique. On one
hand, the continuation technique is an easily implemented strategy for speed-
ing up the ITAs by using a decreasing sequence of regularization parameters,
which was originally proposed in [6, 26] without theoretical analysis. Xiao and
Zhang [7] proved that the iterative soft thresholding algorithm (ISTA) with
the continuation technique for the ℓ1 regularization problem converges to an
approximate true sparse solution under the assumption of the restricted isom-
etry property (RIP). Furthermore Jiao et al. [27] showed the convergence of
the ITA with the continuation technique for the ℓ1 and ℓ0 regularization prob-
lems under the assumption of the mutual incoherence property. On the other
hand, the truncation technique is widely used to ensure the sparsity structure
of the iterates by maintaining its large components and discarding the small
ones. One of the most popular algorithms using the truncation technique is
the class of iterative hard thresholding algorithms [20, 28, 29], in which their
convergence to an approximate true sparse solution was established under the
assumption of the RIP. However, to the best of our knowledge, there is still no
paper devoted to employing the continuation technique or the truncation tech-
nique to accelerate the ITA for solving the nonconvex regularization problems,
apart from ℓ1 and ℓ0 regularization problems as mentioned above.
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Motivated by the results of ℓ1 and ℓ0 regularizations in [7, 20, 27], in this
paper for a class of nonconvex sparse penalties, we will show that ITAs with
the continuation technique or the truncation technique approach an approxi-
mate true sparse solution of (1). Furthermore, by virtue of the recovery bounds
of problem (2) with SCAD, MCP and ℓp penalty in [15, 17], we will show that
the ITAs approach an approximate global solution of problem (2). For these
purposes, we introduce a notion of limited shrinkage thresholding operator
that provides a unified framework of proximal mappings of several nonconvex
sparse penalties, including SCAD, MCP, and ℓp penalty. Employing the limited
shrinkage thresholding operator within the framework of ITA and combining
with the continuation technique and the truncation technique, we propose an
iterative limited shrinkage thresholding algorithm with continuation (ILSTAC)
and the one with truncation (ILSTAT) respectively; see Algorithms 1 and 2.
The proposed ILSTAC and ILSTAT are of simple formulation and low storage
requirement, and thus extremely efficient for large-scale sparse optimization
problems. Under the assumption of the RIP, we show that the output of the
ILSTAC approaches an approximate true sparse solution of (1) within a tol-
erance proportional to the noise level, and that the sequence generated by the
ILSTAT converges to an approximate true sparse solution at a geometric rate;
see Theorems 1 and 2 respectively. We also obtain the complexities of ILSTAC
and ILSTAT.

Since the limited shrinkage thresholding operator includes proximal map-
pings of SCAD, MCP, and ℓp penalty as the special cases, Theorems 1 and 2
are applied to establish the convergence of the PGA with continuation (PGAC)
and the PGA with truncation (PGAT) respectively for these nonconvex regu-
larization problems to an approximate true sparse solution of (1), see Theorems
3, 4, 5 and 6 respectively. Moreover, combining these results with the recov-
ery bounds in [15, 17], we present the convergence of the proposed algorithms
to an approximate global solution of problem (2) with SCAD, MCP, and ℓp
penalty, respectively.

We illustrate in Figure 1 the convergence behavior of the PGA, PGAC and
PGAT for an ℓ1/2 regularization problem. In this example, when approaching
the local solution (0, 0), a fixed (properly large) regularization parameter in
the proximal mapping step in PGA may over-penalize the gradient descent
iterate of the least squares at (0, 0), and thus lead PGA to stay at this local
solution. In contrast, using a decreasing sequence of regularization parameters
in the PGAC is able to avoid over-penalization on variables, and thus help
PGAC to escape from the local solution. In this example, the iterates of PGAT
will stay on a 1-dimensional subspace after the 1st iterate.

Our preliminary numerical results show that the PGAC and the PGAT
have strong sparsity promoting capability and outperform the standard PGA
on both accuracy and robustness. In addition, we also compare the numerical
performance of PGAs with a branch-and-bound method that was recently
proposed in [33].
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(a) Initial point x0 := (−5,−2) (b) Initial point x0 := (5,−2)

Fig. 1: Consider problem (1) and the regularization problem (2) with A :=[
−0.2554, 0.0778
0.1084, −0.1811

]
, b :=

[
−1.2770
0.5420

]
, ε = 0, φ(x) = ℓ1/2 penalty and λ :=

0.3. If starting from (−5,−2), the PGA only converges to a local solution
(0, 0), and the PGAC and PGAT first go to the neighborhood of the local
solution (0, 0), are then able to escape from this local solution, and finally
converge to an approximation of the true sparse solution (5, 0), see (a). If
starting from (5,−2), PGA and PGAC will have the same behavoir as starting
from (−5,−2). However PGAT will directly converge to an approximation of
the true sparse solution (5, 0), see (b). Note that this true sparse solution is
also an approximate global solution of the ℓ1/2 regularization problem.

This paper is organized as follows. In Section 2, we present the notations
and preliminary results to be used in this paper. In Section 3, we propose the
ILSTAC and the ILSTAT and establish their convergence to an approximate
true solution of linear system (1) under the assumption of the RIP. Appli-
cations to certain nonconvex regularization problems with SCAD, MCP, and
ℓp penalty are presented in Section 4. Preliminary numerical results and the
conclusion are presented in Sections 5 and 6 respectively.

2 Notation and preliminary results

Let Rn be an n-dimensional Euclidean space with Euclidean norm ∥x∥ :=√
⟨x, x⟩. We use the caligraphic letters S, I, J to denote the index sets, and

use xS and AS to denote the subvector of vector x indexed by S and the
submatrix of matrix A with columns indexed by S, respectively. As usual,
let N denote the set of nonnegative integers, R+ := {x ∈ R | x ≥ 0} and
R++ := {x ∈ R | x > 0}. Moreover, we adopt Sc to denote the complement of
S, ♯(·) to denote the number of elements in an index set, I represents an identity
matrix and A⊤ denotes the transpose of matrix A, and [n] := {1, 2, . . . , n}.
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The support function and the signum function are denoted by supp : Rn →
2[n] and sign : R → R, respectively; that is,

supp(x) := {i : xi ̸= 0} for each x ∈ Rn,

and

sign(t) :=

 1, t > 0,
0, t = 0,
−1, t < 0,

for each t ∈ R.

The restricted isometry property (RIP) [3] is a well-known regularity con-
dition measuring how close the submatrices are nearly orthonormal restricted
on sparse subspaces. The RIP has been widely used for the establishment of
oracle property and recovery bound for sparse optimization problems [1–3],
and the convergence analysis of sparse optimization algorithms [7, 20, 30].
Many types of random matrices, including Gaussian, Bernoulli, and partial
Fourier matrices, have been shown to satisfy the RIP with exponentially high
probability [31].

Definition 1 ([3]) Let A ∈ Rm×n and s ∈ N. The s-restricted isometry constant δs
is defined to be the smallest quantity such that

(1− δs)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δs)∥x∥2

for each x ∈ Rn with ∥x∥0 ≤ s. The matrix A is said to satisfy the s-RIP with δs if
δs < 1.

It is clear by Definition 1 that δs is nondecreasing in s, that is δs ≤ δt
whenever s ≤ t. The following lemma recalls some properties of the RIP, which
will be useful in convergence analysis of our proposed algorithms.

Lemma 1 Suppose that A satisfies s-RIP with δs < 1. Let x ∈ Rn, ε ∈ Rm, I,J ⊆
[n], and v ∈ [0, 1

1−δs
]. Then the following assertions are true.

(i) If ♯(I ∪ supp(x)) ≤ s, then ∥((I− vA⊤A)x)I∥ ≤ (1 − v + vδs)∥x∥.
(ii) If ♯(I) ≤ s, then ∥A⊤

I ε∥ ≤
√

1 + δs∥ε∥.
(iii) If I ∩ J = ∅ and ♯(I ∪ J ) ≤ s, then ∥A⊤

JAIxI∥ ≤ δs∥xI∥.

Proof The proof of item (i) with a general v follows an analysis similar to that of
[21, Lemma 6.16] with v = 1 and is thus omitted. Items (ii) and (iii) are taken from
[30, Propositions 3.1 and 3.2] respectively. □

Definition 2 Let κ : R++ → R+ and λ ∈ R++.

(i) Tλ : R → R is said to be a thresholding operator relative to κ(λ) if the following
thresholding property is satisfied:

Tλ(t) = 0 whenever |t| ≤ κ(λ). (3)
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(ii) LTλ : R → R is said to be a limited shrinkage thresholding operator relative to
κ(λ) if (3) and the following limited shrinkage property are satisfied:

|LTλ(t)− t| ≤ κ(λ) for each t ∈ R. (4)

We use LT (κ; λ) to denote the family of limited shrinkage thresholding operators.

The limited shrinkage thresholding operator will provide a unified frame-
work of proximal mappings of several nonconvex sparse penalties, including
SCAD [9], MCP [12], and ℓp penalty (0 ≤ p ≤ 1) [13] as special cases. For
the sake of simplicity, we adopt the same notation for a separable operator
from Rn to Rn with each component being the same operator from R to R,
for example Tλ(x) := (Tλ(xi))

n
i=1 for each x ∈ Rn.

3 Iterative limited shrinkage thresholding
algorithms

The ITA has simple formulation and low computational complexity, which in
general has the following iterative form:

xk+1 := Tvλ(xk − vA⊤(Axk − b)),

where Tλ : Rn → Rn is a thresholding operator relative to κ(λ).
In this section, we will propose two general frameworks of ITAs by using

a limited shrinkage thresholding operator and combining with the continua-
tion technique and the truncation technique respectively. We will investigate
their convergence to an approximate true sparse solution of (1). The following
assumption on the limited shrinkage thresholding operator is made throughout
this section.

Assumption 1 Let α, β > 0 and suppose that LTλ ∈ LT (κ; λ) for κ(λ) := αλβ and
all λ > 0.

It was reported in [10] that the s-sparse solution of linear system (1) is
unique under the s-RIP assumption. Throughout this paper, we adopt the
following notation:

Let x̄ be an s-sparse solution of (1) with support S := supp(x̄). (5)

3.1 Iterative thresholding algorithms with continuation

Note that the regularization parameter λ plays an important role in the numer-
ical performance of sparse optimization algorithms. According to the recovery
bound theory, the regularization parameter λ should be small to guarantee the
better recovery; however, the computational mathematics theory and exten-
sive numerical studies show that a too small parameter will result in the
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ill-posedness of the subproblems and the convergence is faster if the parame-
ter is properly larger. To inherit both advantages in theoretical and numerical
aspects, the idea of the continuation technique is using a geometrically decreas-
ing sequence of regularization parameters {λk} starting at a large one in place
of a fixed one; see, e.g., [6, 7, 26].

By virtue of a limited shrinkage thresholding operator and inspired by the
idea of the continuation technique, we propose the following iterative limited
shrinkage thresholding algorithm with the continuation technique (ILSTAC).

Algorithm 1 ILSTAC

1: Initialize regularization parameters λ0 > 0, λ > 0 and continuation
parameter γ ∈ (0, 1), initial point x0 := 0, stepsize v > 0 and k = 0.

2: if λk < λ then
3: break
4: else
5: xk+1 := LTvλk

(xk − vA⊤(Axk − b))
6: λk+1 := γλk

7: k = k + 1
8: end if
9: Output x∗ := xk

Remark 1 (i) The step 5 in ILSTAC consists of two steps: the first step is a gra-
dient descent iterate for the least squares of (1), which gradually reduces the error
of the linear system (1); and the second one is using a limited shrinkage threshold-
ing operator to gradually transform the outcome of the descent iterate to a sparse
subspace.

(ii) When the limited shrinkage thresholding operator LTλ has a closed-form
formula (see examples in Section 4), the ILSTAC inherits the significant advantages
of the ITA that is of simple formulation and low computational complexity, and thus
is extremely efficient for large-scale sparse optimization problems.

The main theorem of this subsection is as follows, which provides cer-
tain parameters setting (relevant to the RIP) in the ILSTAC to guarantee its
convergence to an approximate true sparse solution of (1) within a tolerance
proportional to a noise level. In addition, the support of the output of the
ILSTAC has no false prediction and is exactly a subset of the support of the
true sparse solution. Recall that x̄ is the true s-sparse solution of (1) with
support S; see (5).

Theorem 1 Suppose that Assumption 1 holds and A satisfies the RIP with

(
√
s+ 1)δs+1 < 1. (6)

Let α, β > 0 be as in Assumption 1,

η ∈
(
0, 1− (

√
s+ 1)δs+1

)
, (7)



Springer Nature 2021 LATEX template

Convergence of ITA for Composite Nonconvex Optimization 9

set the stepsize v ≤ 1
1−δs

, the regularization parameters

λ0 ≥ 1

v

(
v∥x̄∥

α(
√
s+ 1)

) 1
β

and λ :=
1

v

(
v
√
1 + δs
αη

∥ε∥
) 1

β

, (8)

and the continuation parameter

γ ∈

[(
(
√
s+ 1)vδs+1

1− η
+ 1− v

) 1
β

, 1

)
. (9)

Let Algorithm 1 with these parameters output x∗. Then it holds that

supp(x∗) ⊆ S and ∥x∗ − x̄∥ ≤ (1− η)
√
1 + δs

ηδs+1
∥ε∥. (10)

Furthermore, if mini∈S |x̄i| > (1−η)
√
1+δs

ηδs+1
∥ε∥, then supp(x∗) = S.

Proof By assumption (6), one checks that 1 − (
√
s + 1)δs+1 > 0, and thus η in (7)

is well-defined. It follows from (7) that
(
√
s+1)vδs+1

1−η + 1− v < 1. Hence γ in (9) and
Algorithm 1 with these parameters are well-defined.

To furniture the proof, we let Algorithm 1 generate the finite sequence {xk}Kk=0

and output x∗ = xK , and write

ρ :=
1− η

δs+1
, (11)

and
yk := xk − vA⊤(Axk − b), Sk := supp(xk) and rk := xk − x̄ (12)

for each k = 0, . . . ,K. By Assumption 1, one has that (3) and (4) are satisfied with
κ(λ) := αλβ . We shall show by induction that the following inclusion and estimate
hold for each k = 0, . . . ,K:

Sk ⊆ S and ∥rk∥ ≤ ρ

v
κ(vλk) = ραvβ−1λβk (13)

(by Assumption 1). By the initial selection that x0 := 0, one has that S0 = ∅ ⊆ S. By
definition of ρ in (11) and assumption (7), we obtain by assumption of λ0 in (8) that

ραvβ−1λβ0 > (
√
s+ 1)αvβ−1λβ0 ≥ ∥x̄∥ = ∥r0∥.

It is shown that (13) holds for k = 0.
Now suppose that (13) holds for iterate k (< K). Then by (12) and (1), we have

that
yk = xk − vA⊤(Axk −Ax̄− ε) = xk − vA⊤ASr

k
S + vA⊤ε, (14)

where the second equality follows from the hypothesis Sk ⊆ S in (13). Fix i ∈ Sc. It
follows from the hypothesis Sk ⊆ S in (13) that xki = 0, and then (14) is reduced to

|yki | ≤ v|A⊤
i ASr

k
S |+ v|A⊤

i ε|. (15)

Since {i} ∩ S = ∅, we obtain by Lemma 1(iii) and (ii) that

|A⊤
i ASr

k
S | ≤ δs+1∥rkS∥=δs+1∥rk∥ and |A⊤

i ε| ≤
√

1 + δ1∥ε∥ ≤
√
1 + δs∥ε∥

(by the nondecreasing property that δ1 ≤ δs). This, together with (15), yields that

|yki | ≤ vδs+1∥rk∥+ v
√
1 + δs∥ε∥. (16)
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By the stopping criterion that λk < λ and the definition of λ in (8), one can get

that λk ≥ λ = 1
v

(
v
√
1+δs
αη ∥ε∥

) 1
β
, that is, ∥ε∥ ≤ αη

v
√
1+δs

(vλk)
β . This, together with

hypothesis (13), deduces (16) to

|yki | ≤ vδs+1∥rk∥+ v
√
1 + δs∥ε∥ ≤ δs+1ρα(vλk)

β + αη(vλk)
β = α(vλk)

β , (17)

where the equality holds by definition of ρ in (11). Thus (16) is reduced to |yki | ≤
κ(vλk) by Assumption 1. Hence it follows from (3) that xk+1

i = 0; consequently,
i ∈ Sc

k+1. This holds for any i ∈ Sc, then we get that Sc ⊆ Sc
k+1, and equivalently,

Sk+1 ⊆ S.
On the other hand, we get by the inclusion Sk+1 ⊆ S that

∥xk+1 − x̄∥ = ∥xk+1
S − x̄S∥ ≤ ∥xk+1

S − ykS∥+ ∥ykS − x̄S∥. (18)

By (4) and in view of Algorithm 1 that xk+1 := LTvλk
(yk), we obtain that

∥xk+1
S − ykS∥ ≤

√
s∥xk+1 − yk∥∞ =

√
s∥LTvλk

(yk)− yk∥∞ ≤
√
sκ(vλk), (19)

and by (12) and (14) that

∥ykS − x̄S∥ = ∥(xk − x̄− vA⊤Ark)S + vA⊤
S ε∥ = ∥((I− vA⊤A)rk)S + vA⊤

S ε∥.
Then it follows that

∥ykS − x̄S∥ ≤ ∥((I− vA⊤A)rk)S∥+ v∥A⊤
S ε∥. (20)

It follows from Lemma 1(i) and (ii) that

∥((I− vA⊤A)rk)S∥ ≤ (1− v + vδs)∥rk∥ and ∥A⊤
S ε∥ ≤

√
1 + δs∥ε∥,

respectively. This, together with (18)-(20), implies that

∥xk+1 − x̄∥ ≤
√
sκ(vλk) + (1− v + vδs)∥rk∥+ v

√
1 + δs∥ε∥. (21)

By the fact that δs ≤ δs+1 and by (17), one has that

vδs∥rk∥+ v
√
1 + δs∥ε∥ ≤ vδs+1∥rk∥+ v

√
1 + δs∥ε∥ ≤ κ(vλk).

Combining this with (13), (21) is reduced to

∥xk+1 − x̄∥ ≤
(√

s+ 1 +
ρ

v
(1− v)

)
κ(vλk) ≤

(√
s+ 1 +

ρ

v
(1− v)

)
α(vλk)

β (22)

(by definition κ(λ) := αλβ in Assumption 1). Noting by definition of ρ in (11) that

(
√
s+ 1) +

ρ

v
(1− v) =

ρ

v

(
(
√
s+ 1)vδs+1

1− η
+ 1− v

)
≤ ρ

v
γβ

(due to definition of γ in (9)), (22) is reduced to

∥xk+1 − x̄∥ ≤ ρ

v
α(vγλk)

β =
ρ

v
κ(vλk+1)

(by the continuation rule that λk+1 := γλk). This, together with Sk+1 ⊆ S, shows
that (13) holds for each iterate k = 0, . . . ,K. Then we conclude by (13) that
supp(x∗) ⊆ S and

∥x∗ − x̄∥ ≤ ραvβ−1λβK < ραvβ−1λβ =
(1− η)

√
1 + δs

ηδs+1
∥ε∥

by definitions of λ and ρ in (8) and (11). Hence (10) is proved.

Moreover, suppose that mini∈S |x̄i| > (1−η)
√
1+δs

ηδs+1
∥ε∥. We prove by contradic-

tion, assuming that supp(x∗) ̸= S. This, together with supp(x∗) ⊆ S in (10),
indicates that there exists i ∈ S such that x∗i = 0. Hence

∥x∗ − x̄∥ ≥ |x∗i − x̄i| >
(1− η)

√
1 + δs

ηδs+1
∥ε∥,

which yields a contradiction with the inequality in (10). Hence supp(x∗) = S. □
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Remark 2 (i) When S is known, the initial point x0 in ILSTAC can be chosen as one
satisfying supp(x0) ⊂ S such that the result of Theorem 1 also holds; see the proof
of Theorem 1.

(ii) By the continuation technique in Algorithm 1 and regularization parameters

setting (8) in Theorem 1, particularly setting λ0 := τ
v

(
v∥x̄∥

α(
√
s+1)

) 1
β

with τ ≥ 1, we

obtain the complexity K of the ILSTAC to obtain x∗:

K :=

⌈
logγ−1

λ0
λ

⌉
=

⌈
1

β
logγ−1

ητβ∥x̄∥
(
√
s+ 1)

√
1 + δs∥ε∥

⌉
.

Adopting a similar proof in [21, Theorem 9.2] and using the concentra-
tion inequality in [22, Example 2.11], the following lemma provides a minimal
requirement of the sample size for guaranteeing the s-RIP with high probability
for a Gaussian matrix.

Lemma 2 Let A ∈ Rm×n be a Gaussian matrix with each Aij ∼ N (0, 1
m ). Let

0 < δ, ε < 1. Then A satisfies the s-RIP, where δs < δ with probability at least 1− ε
provided

m ≥ 16

3
δ−2

(
s(9 + 2 ln

n

s
) + 2 ln

2

ε

)
.

Remark 3 The RIP assumption (6) is critical in Theorem 1 in guaranteeing the
convergence of the ILSTAC to an approximate true sparse solution of (1). This
remark provides some circumstances, where (6) is fulfilled.

(i) One can obtain by [2, Proposition 4.1] that (6) is satisfied when the following
mutual incoherence property (MIP) is satisfied

max
i̸=j

|⟨Ai, Aj⟩| ≤
1

s(
√
s+ 1)

.

Particularly, when A is column-wise normalized and v = 1, following a similar line
of analysis, we can obtain the convergence result of Theorem 1 when the assumption
(6) is replaced by maxi̸=j |⟨Ai, Aj⟩| ≤ 1

2s .

(ii) Suppose that A ∈ Rm×n is a Gaussian matrix with each Aij ∼ N (0, 1
m ). It

follows from Lemma 2 that (6) is satisfied with probability at least 1−ε provided that

m ≥ 16

3
(
√
s+ 1)2

(
(s+ 1)(9 + 2 ln

n

s+ 1
) + 2 ln

2

ε

)
.

3.2 Iterative thresholding algorithms with truncation

A truncation operator (also named the hard thresholding operator), denoted
as Hs, is to set all but the largest s elements of a vector (in magnitude) to
zero [20]. By virtue of the limited shrinkage thresholding operator and the
truncation operator, we propose an iterative limited shrinkage thresholding
algorithm with the truncation technique (ILSTAT) to approach the true sparse
solution of (1).
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Algorithm 2 ILSTAT

1: Initialization: regularization parameter λ > 0, truncation parameter s ∈ N,
and random initial point x0 ∈ Rn, stepsize v > 0 and k = 0.

2: Iteration: for each k ∈ N, having xk, we determine xk+1 via

xk+1 := Hs ◦ LTvλ(xk − vA⊤(Axk − b)). (23)

Remark 4 (i) The ILSTAT adopts the truncation operator Hs to maintain the spar-
sity level s of the sequence {xk}, which is helpful for guaranteeing the convergence
to an approximate true solution with the required sparsity of (1); see Theorem 2.

(ii) Since the truncation operator Hs is very simple to calculate, the ILSTAT
inherits the significant advantages of the ITA that is of simple formulation and
low computational complexity, and thus is extremely efficient for large-scale sparse
optimization problems, when LTλ has a closed-form formulation.

The main result of this subsection is as follows, in which we establish the
convergence of the ILSTAT to an approximate true sparse solution of (1) under
the assumption of the RIP.

Theorem 2 Suppose that Assumption 1 holds and A satisfies the 3s-RIP. Let {xk}
be a sequence generated by Algorithm 2 with stepsize

1

2(1− δ3s)
< v ≤ 1

1− δ3s
. (24)

Then {xk} converges approximately to x̄ at a geometric rate; particularly,

∥xk − x̄∥ ≤ ρk∥x0 − x̄∥+ 2

1− ρ
(v
√

1 + δ2s∥ε∥+
√
2sκ(vλ)), (25)

where ρ := 2(1− v + vδ3s) ∈ (0, 1).

Proof By Assumption 1, one has that (3) and (4) are satisfied with κ(λ) := αλβ . To
proceed the convergence analysis, we re-write the process (23) of Algorithm 2 into
the following three steps:

yk := xk − vA⊤(Axk − b), zk := LTvλ(y
k), xk+1 := Hs(z

k). (26)

Moreover, for the sake of simplicity, we write

rk := xk − x̄, Sk := supp(xk) and Ik = S ∪ Sk; (27)

and then one observes that

♯(S) = s, ♯(Sk) ≤ s and ♯(Ik) ≤ 2s for each k ∈ N. (28)

Noting that

supp(x̄) = S ⊆ Ik+1 and supp(xk+1) = Sk+1 ⊆ Ik+1, (29)

by (27) we get that

∥rk+1∥ = ∥xk+1
Ik+1

− x̄Ik+1
∥ ≤ ∥xk+1

Ik+1
− zkIk+1

∥+ ∥zkIk+1
− x̄Ik+1

∥. (30)
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Noting by (26) that xk+1 = Hs(z
k) = argmin∥x∥0≤s ∥x− zk∥ (cf [20, pp. 266]), and

by the fact that ∥x̄∥0 = s, we obtain that ∥zk − xk+1∥ ≤ ∥zk − x̄∥. This, together
with (29), implies that ∥zkIk+1

− xk+1
Ik+1

∥ ≤ ∥zkIk+1
− x̄Ik+1

∥. Consequently, (30) is

reduced to

∥rk+1∥ ≤ 2∥zkIk+1
− x̄Ik+1

∥ ≤ 2(∥zkIk+1
− ykIk+1

∥+ ∥ykIk+1
− x̄Ik+1

∥). (31)

Noting by (26) that zk = LTvλ(y
k), we have by (4) that ∥zk − yk∥∞ ≤ κ(vλ).

Combining this with (28), we achieve that

∥ykIk+1
− zkIk+1

∥ ≤
√

♯(Ik+1)∥yk − zk∥∞ ≤
√
2sκ(vλ). (32)

On the other hand, we obtain by the first equality of (26) and (1) that

yk = xk − vA⊤(Axk −Ax̄− ε) = xk − vA⊤Ark + vA⊤ε

(due to (27)); and hence it follows that

∥ykIk+1
− x̄Ik+1

∥ ≤ ∥((I− vA⊤A)rk)Ik+1
∥+ v∥A⊤

Ik+1
ε∥. (33)

Note by (28) and (29) that ♯(Ik+1) ≤ 2s and ♯(Ik+1∪supp(rk)) = ♯(Ik+1∪Sk) ≤ 3s.
Then by the assumption of 3s-RIP of A, we obtain by Lemma 1(i) and (ii) that

∥((I− vA⊤A)rk)Ik+1
∥ ≤ (1− v + vδ3s)∥rk∥ and ∥A⊤

Ik+1
ε∥ ≤

√
1 + δ2s∥ε∥,

respectively. By the above two inequalities, (33) is reduced to

∥ykIk+1
− x̄Ik+1

∥ ≤ (1− v + vδ3s)∥rk∥+ v
√

1 + δ2s∥ε∥.

This, together with (31) and (32), yields that

∥rk+1∥ ≤ 2(1− v + vδ3s)∥rk∥+ 2(v
√

1 + δ2s∥ε∥+
√
2sκ(vλ)). (34)

Let ρ := 2(1− v + vδ3s). By assumption (24), we check that ρ < 1, and then obtain
inductively by (34) that

∥xk+1 − x̄∥ ≤ ρ∥xk − x̄∥+ 2(v
√
1 + δ2s∥ε∥+

√
2sκ(vλ))

≤ · · ·
≤ ρk+1∥x0 − x̄∥+ 2

1−ρ (v
√
1 + δ2s∥ε∥+

√
2sκ(vλ)).

The proof is complete. □

Remark 5 (i) Theorem 2 shows a geometric convergence rate of the ILSTAT to an
approximate true sparse solution of (1) within a tolerance. The tolerance in (25) has
an additive form of a term on noise level O(∥ε∥) and a term on limited shrinkage
thresholding operator O(κ(vλ)).

(ii) As in Assumption 1, κ(λ) = αλβ for some α, β > 0, which could be small when
a small regularization parameter λ is selected. For example, it will be shown later in
Lemmas 3 and 4 that Assumption 1 holds with κ(λ) := λ for the SCAD and MCP

penalty, and with κ(λ) := αpλ
1

2−p for the ℓp penalty (where αp is given by (45)),
respectively. The orders of λ’s in these κ(λ)’s are the same as the ones in the cor-
responding recovery bounds of problem (2) with SCAD/MCP penalty [17, Theorem
1] and with ℓp penalty [10, Theorem 9] and [15, Theorem 2], respectively. It will
be illustrated in our numerical experiments in Section 5 that the best regularization
parameter is about λ = 10−4.
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(iii) By (25), we obtain the complexity of the ILSTAT that

∥xk
∗
− x̄∥ ≤ 3− ρ

1− ρ
(v
√

1 + δ2s∥ε∥+
√
2sκ(vλ)), (35)

after at most k∗ := ⌈logρ−1
∥x0−x̄∥

v
√
1+δ2s∥ε∥+

√
2sκ(vλ)

⌉ iterates. Indeed, we have by

definition of k∗ that

ρk
∗
∥x0 − x̄∥ ≤ v

√
1 + δ2s∥ε∥+

√
2sκ(vλ).

This, together with (25), implies (35).

4 Proximal gradient algorithms for nonconvex
regularization problems

Proximal gradient algorithm (PGA) [4, 10] is one of the most popular and
practical algorithms for (convex or nonconvex) composite optimization prob-
lem (2), which successively processes the gradient descent operator on the least
square and the proximal operator on the penalty function φ:

xk+1 := Proxvλφ(xk − vA⊤(Axk − b)),

where the proximal mapping Proxf : Rn → Rn is defined by

Proxf (y) := arg min
x∈Rn

f(x) +
1

2
∥x− y∥2 for each y ∈ Rn.

When the penalty function is separable, i.e.,

φ(x) :=

n∑
i=1

ϕ(xi) for each x ∈ Rn, (36)

the iteration of the PGA is equivalent to a cycle of one-dimensional proximal
optimization subproblems

xk+1
i := Proxvλϕ(xk

i − vA⊤
i (Axk − b)) for i = 1, . . . , n, (37)

and then Proxλφ(x) = (Proxλϕ(xi))
n
i=1 for each x ∈ Rn.

Inspired by the idea of Algorithms 1 and 2 (with the proximal mapping
Proxλφ in place of the limited shrinkage thresholding operator LTλ), we obtain
the PGA with the continuation technique (PGAC) and the PGA with the
truncation technique (PGAT) for solving the problem (2) respectively.

The main computational task of PGAC and PGAT is the proximal map-
ping Proxλφ of the nonconvex penalty function φ. For the popular nonconvex
penalty functions including SCAD [9], MCP [12], and ℓp penalty with p ∈ [0, 1]
[13], the penalty is separable and the one-dimensional proximal mapping (37)
has a closed-form formula. Therefore the corresponding algorithms can be effi-
ciently implemented in a parallel and analytical manner and extremely efficient
for large-scale sparse optimization problems.
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4.1 SCAD and MCP

Let a > 2. The SCAD penalty [9] is of separable form (36) with

ϕSCAD(t) :=

∫ |t|

0

min

{
1,

(aλ− α)+
(a− 1)λ

}
dα =


|t|, |t| < λ,

2a|t|− t2

λ −λ

2(a−1) , λ ≤ |t| < aλ,
(a+1)λ

2 , |t| > aλ,

(38)

where t ∈ R. The proximal mapping of the SCAD penalty (38) has a closed-
form formula (see [9, Eq. (2.8)]):

ProxλϕSCAD
(t) =


0, |t| ≤ λ,

sign(t)(|t| − λ), λ < |t| ≤ 2λ,
(a− 1)t− sign(t)aλ

a− 2 , 2λ < |t| ≤ aλ,

t, |t| > aλ.

(39)

Let a > 1. The MCP penalty [12] is of separable form (36) with

ϕMCP(t) :=

∫ |t|

0

(
1 − α

aλ

)
+

dα =

{
|t| − t2

2aλ , |t| < aλ,
1
2aλ, |t| ≥ aλ,

(40)

where t ∈ R. The proximal mapping of the MCP penalty (40) has a closed-form
formula:

ProxλϕMCP(t) =


0, |t| ≤ λ,

sign(t)(|t|−λ)
1−1/a , λ < |t| ≤ aλ,

t, |t| > aλ.

(41)

The following lemma validates that the proximal mappings of the SCAD
penalty and the MCP penalty are limited shrinkage thresholding operators
relative to an identity function.

Lemma 3 ProxλϕSCAD
∈ LT (κ; λ) and ProxλϕMCP

∈ LT (κ; λ) with κ(λ) := λ for
each λ ∈ R++.

Proof It directly follows from (39) and (41) that ProxλϕSCAD
and ProxλϕMCP

satisfy
the thresholding property (3) with ProxλϕSCAD

in place of Tλ, respectively. Moreover,
we have by (39) that

|ProxλϕSCAD
(t)− t| =


|t|, |t| ≤ λ,
λ, λ < |t| ≤ 2λ,

aλ−|t|
a−2 , 2λ < |t| ≤ aλ,

0, |t| > aλ,

 ≤ λ,

and by (41) that

|ProxλϕMCP
(t)− t| =


|t|, |t| ≤ λ,

aλ−|t|
a−1 , λ < |t| ≤ aλ,

0, |t| > aλ,

 ≤ λ.
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Consequently, one can check the limited shrinkage property (4) with ProxλϕSCAD

and ProxλϕMCP
in place of LTλ, respectively. □

Directly applying Theorems 1 and 2 and Lemma 3, we present in the fol-
lowing theorems the convergence of the PGAC and the PGAT with SCAD
proximal mapping (39) or MCP proximal mapping (41) to an approximate
true sparse solution of (1) under the assumption of the RIP. Recall that x̄ is
the true s-sparse solution of (1) with support S.

Theorem 3 Suppose that A satisfies the s-RIP with (6). Let η be defined in (7),
and set

v ≤ 1

1− δs
, λ0 ≥ ∥x̄∥√

s+ 1
, λ :=

√
1 + δs
η

∥ε∥, γ ∈
[
(
√
s+ 1)vδs+1

1− η
+ 1− v, 1

)
.

Let the PGAC with these parameters and SCAD proximal mapping (39) or MCP
proximal mapping (41) output x∗. Then (10) is satisfied.

Theorem 4 Suppose that A satisfies the 3s-RIP. Let {xk} be a sequence gener-
ated by the PGAT with SCAD proximal mapping (39) or MCP proximal mapping
(41) and stepsize (24). Then {xk} converges approximately to x̄ at a geometric rate;
particularly,

∥xk − x̄∥ ≤ ρk∥x0 − x̄∥+ 2v

1− ρ
(
√

1 + δ2s∥ε∥+
√
2sλ),

where ρ := 2(1− v + vδ3s) ∈ (0, 1).

Combining Theorems 3 and 4 with the recovery bound results [17], we
obtain the convergence of the PGAC and the PGAT with SCAD proximal
mapping (39) or MCP proximal mapping (41) to an approximation global solu-
tion of the corresponding problem (2) in Corollaries 1 and 2 below respectively,
when the noise ε in (1) is a Gaussian one or a sub-Gaussian one. For nota-
tion simplicity, let φS/M and xS/M denote the penalty function and a global
solution of problem (2) when φ is the φSCAD or φMCP penalty.

Corollary 1 Suppose that assumptions in Theorem 3 are satisfied. Suppose that
ε in (1) is a Gaussian noise or a sub-Gaussian noise and the following restricted
invertibility condition related to SCAD/MCP penalty is satisfied with η > 1:

min

{√
s∥A⊤Ax∥∞
m∥x∥ : φS/M(xSc) ≤ η φS/M(xS)

}
> 0. (42)

Then it holds with probability 1− exp(− 3−2
√
2

2 m) that

∥x∗ − xS/M∥ ≤ O(
√
sλ).
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Proof By assumption of the restricted invertibility condition (42), it follows from the
recovery bound result of problem (2) with SCAD/MCP penalty [17, Theorem 1] that

∥xS/M − x̄∥ ≤ O(
√
sλ) (43)

with probability 1− exp(− 3−2
√
2

2 m). On the other hand, Theorem 3 shows that the
PGAC with SCAD/MCP proximal mapping outputs x∗ that satisfies

∥x∗ − x̄∥ ≤ (1− η)
√
1 + δs

ηδs+1
∥ε∥ =

(1− η)

δs+1
λ = O(

√
sλ).

This, together with (43), implies that

∥x∗ − xS/M∥ ≤ ∥x∗ − x̄∥+ ∥xS/M − x̄∥ ≤ O(
√
sλ)

with probability 1− exp(− 3−2
√
2

2 m). The proof is complete. □

Corollary 2 Suppose that assumptions in Theorem 4 and Corollary 1 are satisfied.

Then it holds with probability 1− exp(− 3−2
√
2

2 m) that

∥xk − xS/M∥ ≤ ρk∥x0 − x̄∥+O(∥ε∥) +O(
√
sλ),

where ρ := 2(1− v + vδ3s) ∈ (0, 1).

4.2 ℓp penalty

For 0 ≤ p ≤ 1, the ℓp penalty [13] is of separable form (36) with

ϕℓp(t) := |t|p for each t ∈ R, (44)

where we adopt the convenience that 00 = 0. Write

αp :=

{
1, p = 1,

(2 − p)(2 − 2p)−
1−p
2−p , p ∈ [0, 1).

(45)

The proximal mapping of the ℓp penalty (44) has a solution formulated as (see
[32, Theorem 1])

Proxλϕℓp
(t) =

{
0, |t| ≤ αpλ

1
2−p ,

t∗, |t| > αpλ
1

2−p ,
(46)

where t∗ is the unique (nonzero) solution of the following problem:

min
x∈R

h(x) := λ|x|p +
1

2
(x− t)2. (47)

The following lemma validates that the proximal mapping of the ℓp penalty
is a limited shrinkage thresholding operator.

Lemma 4 Proxλϕℓp
∈ LT (κ; λ) with κ(λ) := αpλ

1
2−p for each λ ∈ R++.
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Proof It directly follows from (46) that Proxλϕℓp
satisfies the thresholding property

(3) with Proxλϕℓp
in place of Tλ and κ(λ) := αpλ

1
2−p . Then it remains to show that

|Proxλϕℓp
(t)− t| ≤ αpλ

1
2−p for each t ∈ R. (48)

When |t| ≤ αpλ
1

2−p , one has by (46) that |Proxλϕℓp
(t)−t| = |t| ≤ αpλ

1
2−p . Below we

consider the case when |t| > αpλ
1

2−p . In this case, we get by (46) that Proxλϕℓp
(t) =

t∗ is the unique (nonzero) solution of problem (47); consequently, the optimality
conditions of (47) says that

h′(t∗) = 0 and h′′(t∗) ≥ 0.

By definition of h(·) in (47), it follows that h′(t∗) = λp|t∗|p−1sign(t∗) + t∗ − t = 0;
and consequently,

|Proxλϕℓp
(t)− t| = |t∗ − t| = λp|t∗|p−1. (49)

Moreover, one has that h′′(t∗) = λp(p− 1)|t∗|p−2 + 1 ≥ 0; hence, |t∗|p−1 ≤ (λp(1−
p))−

1−p
2−p . Therefore, (49) is reduced to

|Proxλϕℓp
(t)− t| ≤ (λp)

1
2−p (1− p)−

1−p
2−p . (50)

Below we will claim that

(λp)
1

2−p (1− p)−
1−p
2−p ≤ αpλ

1
2−p for each p ∈ [0, 1]. (51)

Granting this, (50) is reduced to (48), as desired.
To show (51), we define f : [0, 1] → R+ by

f(p) :=
(λp)

1
2−p (1− p)−

1−p
2−p

αpλ
1

2−p

=
2

2− p

(p
2

) 1
2−p

for each p ∈ [0, 1]

(by (45)). By the elementary calculus, one can check that f(0) = 0, f(1) = 1 and
f ′(p) > 0 for each p ∈ (0, 1). Then it follows that f(p) ≤ 1 for each p ∈ [0, 1], and
thus (51) is shown to hold. The proof is complete. □

Directly applying Theorems 1 and 2 and Lemma 4, we present the con-
vergence of the PGAC and the PGAT with ℓp proximal mapping (46) to an
approximate true sparse solution of (1) under the assumption of the RIP.

Theorem 5 Suppose that assumptions in Theorem 1 holds with α := αp and β :=
1

2−p . Let the PGAC with the given parameters and ℓp proximal mapping (46) output

x∗. Then (10) is satisfied.

Theorem 6 Suppose that A satisfies the 3s-RIP. Let {xk} be a sequence generated
by the PGAT with ℓp proximal mapping (46) and stepsize (24). Then {xk} converges
approximately to x̄ at a geometric rate; particularly,

∥xk − x̄∥ ≤ ρk∥x0 − x̄∥+ 2

1− ρ
(v
√

1 + δ2s∥ε∥+ αp

√
2s(vλ)

1
2−p ),

where ρ := 2(1− v + vδ3s) ∈ (0, 1).
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Combining Theorems 5 and 6 with the recovery bound result for the ℓp
regularization problem [15], we obtain the convergence of the PGAC and the
PGAT with the ℓp proximal mapping (46) to an approximation global solution
of the corresponding problem (2) in Corollaries 3 and 4 below respectively,
when the noise ε in (1) is a Gaussian one or a sub-Gaussian one.

Corollary 3 Suppose that assumptions in Theorem 5 are satisfied. Suppose that ε
in (1) is a Gaussian noise or a sub-Gaussian noise and the following p-restricted
eigenvalue condition is satisfied with η > 1:

min

{
∥Ax∥√
m∥x∥

: ∥xSc∥pp ≤ η ∥xS∥pp
}

> 0. (52)

Let xℓp be a global solution of problem (2) with ℓp penalty. Then it holds with

probability 1− exp(−m)− (
√
π logn)−1 that

∥x∗ − xℓp∥ ≤ O(
√
sλ

1
2−p ).

Proof By assumption of the p-restricted eigenvalue condition (52), it follows from
the recovery bound result of the ℓp regularization problem [15, Theorem 2] that

∥xℓp − x̄∥ ≤ O(
√
sλ

1
2−p ) (53)

with probability 1− exp(−m)− (
√
π logn)−1. On the other hand, Theorem 5 shows

that the PGAC with ℓp proximal mapping (46) outputs x∗ that satisfies

∥x∗ − x̄∥ ≤ (1− η)
√
1 + δs

ηδs+1
∥ε∥ =

(1− η)αp

δs+1v
1−p
2−p

λ
1

2−p = O(
√
sλ

1
2−p ).

This, together with (53), implies that

∥x∗ − xℓp∥ ≤ ∥x∗ − x̄∥+ ∥xℓp − x̄∥ ≤ O(
√
sλ

1
2−p ).

The proof is complete. □

Corollary 4 Suppose that assumptions in Theorem 6 and Corollary 3 are satisfied.
Then it holds with probability 1− exp(−m)− (

√
π logn)−1 that

∥xk − xℓp∥ ≤ ρk∥x0 − x̄∥+O(∥ε∥) +O(
√
sλ

1
2−p ),

where ρ := 2(1− v + vδ3s) ∈ (0, 1).

Remark 6 It was shown in [27, Theorem 2] that the ISTA and the IHTA with the
continuation technique for solving the ℓ1 and ℓ0 regularization problems converge
to an approximate true sparse solution of (1) under the assumption of the mutual
incoherence property (MIP). Theorem 5 extends and improves [27, Theorem 2] in
several aspects:

- Theorem 5 considers a unified framework of the PGAC for solving the ℓp
regularization problem with p ∈ [0, 1], which covers the ISTA (when p = 1)
and the IHTA (when p = 0) with the continuation technique in [27] as
special cases.
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- Jiao et al. [27] considered problem (1) with A being column normalized and
the ISTA and the IHTA with stepsize v = 1, while Theorem 5 considers
problem (1) with A being a general matrix and the PGAC with a general
stepsize 0 < v < 1

1−δs
.

- Even for the special cases of the ISTA and the IHTA with the continua-
tion technique, Theorem 5 improves [27, Theorem 2] in the sense that our
convergence result is established under the assumption of the RIP, which is
weaker than the MIP assumed in [27, Theorem 2]; see [2, Proposition 4.1].

5 Numerical experiments

In this section, we carry out experiments to illustrate the numerical perfor-
mance of the PGAC and the PGAT for problem (2) with SCAD, MCP and ℓp
penalty (p = 0, 1

2 , 1) respectively, and to compare it with the standard PGA.
All numerical experiments are implemented in R (4.0.0) and executed on a
personal desktop (Intel Core Duo i7-8550, 1.80 GHz, 8.00 GB of RAM).

In numerical experiments, the simulated data are generated via the stan-
dard process of compressive sensing. In details, we randomly generate an i.i.d.
Gaussian ensemble A ∈ Rm×n satisfying AA⊤ = I, and a true s̄-sparse solu-
tion x̄ ∈ Rn via randomly picking s̄ nonzero entries with an i.i.d. Gaussian
ensemble. Then the observation b is generated via

b = Ax̄ + σε1,

where σ ∈ R and ε1 ∼ N (0, 1) is a standard Gaussian noise. In the numerical
experiments, the problem size is set as m = 256 and n = 1024 and the noise
level σ = 0.1%.

The parameters in nonconvex penalties are set as: a = 16 in SCAD (38)
and MCP (40) and p = 0, 1

2 , 1 in ℓp penalty (44). In the implementation, we
select the initial point x0 := 0, the stepsize v := 1, the maximum number

of iterations as 500; the regularization parameters are set as λ0 := ∥x̄∥√
s̄+1

and

λ := 10−4 in PGAC and λ ∈ [10−4, 1] via cross validation in PGA and PGAT.
The performance of the algorithms is evaluated via two major criteria:

- (Accuracy) The relative error (RE): RE := ∥x−x̄∥
∥x̄∥ .

- (Stability) The successful recovery rate: the ratio of successful recovery with
RE < 10−2.

The stopping criteria of the algorithms are listed as follows.

- PGAC: the number of iterations is greater than 500, or λk < λ.
- PGAT and PGA: the number of iterations is greater than 500 or ∥xk −
xk−1∥ ≤ 10−6.

The first experiment aims to show the numerical performance of the PGAC
with different continuation parameter γ and the PGAT with different trunca-
tion parameter s. In this experiment, the sparsity of the true solution is set as
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s̄ = 51. Figure 2(a) and (b) plot the average RE of the solution generated by
the PGAC with γ varying from (0.9, 1) and the one of the PGAT with s vary-
ing from (45, 70) in 200 random trials, respectively. It is demonstrated from
Figure 2(a) that the PGAC with nonconvex penalty obtains an accurate esti-
mation when γ ∈ [0.91, 0.98], while the PGAC with ℓ1 penalty only approaches
an accurate estimation when γ = 0.98. It is indicated from Figure 2(b) that
the PGAT with these five penalties have similar performance: the PGAT can-
not achieve an accurate estimation when s < s̄ and approaches an accurate
estimation when s ≥ s̄ slightly (within 20%). Therefore, in the following two
numerical experiments, let the continuation parameter in PGAC γ = 0.98 and
the truncation parameter in PGAT s = s̄ as default.

(a) Continuation parameter γ in PGAC (b) Truncation parameter s in PGAT

Fig. 2: Numerical results of PGAC and PGAT with different parameters.

The second experiment aims to compare the convergence behavior of the
PGAC and the PGAT with the standard PGA. In this experiment, the sparsity
ratio of the true solution is set as s̄/n := 2%. Figure 3 plots the average RE
of the PGAs starting from 100 different and random initial points along the
number of iterations in a random trials. It is displayed from Figure 3 that the
PGAC and the PGAT converge faster and achieve a more accurate solution
than the standard PGA. This validates the accelerating capability and the
convergence to an approximate true solution of the continuation technique and
the truncation technique in PGA for sparse optimization.

The third experiment aims to compare the stability of the PGAC and the
PGAT with the standard PGA and with different sparse penalties. Figure
4 plots the successful recovery rates of PGA, PGAC and PGAT within 200
random trials at each sparsity level. It is indicated from Figure 4 that (i)
the PGAC and the PGAT can achieve a higher successful recovery rate than
the standard PGA; and (ii) the PGAC with ℓ1/2 penalty outperforms other
penalties, while the PGAT with different sparse penalties share comparable
stability.
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Fig. 3: Convergence behavior of PGAs starting from different initial points.

Fig. 4: Successful recovery rates of PGAs.

We also compare the PGAs (for problem (2) with ℓ1/2 penalty) with a
recently proposed branch-and-bound method (BBsparse in short) for prob-
lem (2) with ℓ0 penalty1 [33], in which an additional stopping criterion is the
maximum running time set as 1000 seconds. Figure 5 presents the successful

1The code is available at https://github.com/ramzi-benmhenni/BBsparse.
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recovery rates and median running times of PGAs and BBsparse for two dif-
ferent situations of variable dimensions: n = 1024 and n = 128, for which the
sample size is m = 256 and m = 32, respectively. Figures 5(a) and 5(b) demon-
strate that PGAs outperform BBsparse with high successful recovery rates for
both high and low dimensional problems when the sparsity level is relatively
small, while BBsparse outperforms PGAs when the sparsity level is relatively
large. In Figures 5(c) and 5(d), it is observed that the PGAs are almost 100
times faster than the BBsparse for both high and low dimensional problems.

(a) Successful recovery rate (when n = 1024) (b) Successful recovery rate (when n = 128)

(c) Median running time (when n = 1024) (d) Median running time (when n = 128)

Fig. 5: Numerical results of PGAs and BBsparse.

In conclusion, the numerical experiments show that the PGAC and the
PGAT for nonconvex regularization problems (2) have the strong sparsity pro-
moting capability and outperforms the standard PGA on both accuracy and
robustness, benefiting from the nonconvex sparse penalty and the continuation
or truncation technique.
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6 Conclusion

In this paper, we proposed two frameworks of ITAs by employing the lim-
ited shrinkage thresholding operator with the continuation technique and the
truncation technique respectively, and established their convergence to an
approximate true sparse solution of linear system (1) under the assumption
of the RIP. Moreover, applying to nonconvex regularization problems (2) with
SCAD, MCP and ℓp penalty (0 ≤ p ≤ 1), we obtained the convergence of
the PGA with the continuation technique or the truncation technique to an
approximate true sparse solution of (1), and an approximate global solution
of (2) by virtue of their recovery bound theory. Preliminary numerical results
show that the continuation technique and the truncation technique can speed
up the convergence and improve the stability of the algorithm, and particu-
larly, are able to escape from the local solution to converge to the true sparse
solution.
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