
QUASI-SUBGRADIENT METHODS WITH BREGMAN DISTANCE FOR
QUASI-CONVEX FEASIBILITY PROBLEMS

YAOHUA HU1, JINGCHAO LI1, YANYAN LIU1, CARISA KWOK WAI YU2,∗

1School of Mathematical Sciences, Shenzhen University, Shenzhen 518060, China.
2Department of Mathematics, Statistics and Insurance, The Hang Seng University of Hong Kong, Shatin, Hong

Kong.

Abstract. In this paper, we consider the quasi-convex feasibility problem (QFP), which is to find a com-
mon point of a family of sublevel sets of quasi-convex functions. By employing the Bregman projection
mapping, we propose a unified framework of Bregman quasi-subgradient methods for solving the QFP.
This paper is contributed to establish the convergence theory, including the global convergence, itera-
tion complexity and convergence rates, of the Bregman quasi-subgradient methods with several general
control schemes, including the α-most violated constraints control and the s-intermittent control. More-
over, we introduce a notion of the Hölder-type bounded error bound property relative to the Bregman
distance for the QFP, and use it to establish the linear (or sublinear) convergence rates for Bregman
quasi-subgradient methods to a feasible solution of the QFP.
Keywords. Quasi-convex feasibility problem; Subgradient method; Bregman distance; Convergence
analysis.

1. INTRODUCTION

The feasibility problem is to find a point x ∈ Rn such that

x ∈C and fi(x)≤ 0 for all i = 1, . . . ,m, (1.1)

where { fi : i = 1, . . . ,m} is a family of continuous functions on Rn and C ⊆ Rn is a closed and
convex set. The feasibility problem is at the core of the modeling of many problems in various
areas of mathematics and physical sciences, such as image recovery [15], radiation therapy
treatment planning [11], wireless sensor networks localization [17, 18], and gene regulatory
network inference [30, 31].

Problem (1.1) is called the convex feasibility problem (CFP) when the involved functions are
convex, which has attracted a great deal of attention in various application fields. However,
the convex function is too restrictive and not accurate enough to characterize many real-life
problems encountered in economics, finance and management science. In contrast, the quasi-
convex function usually provides a much more accurate representation of reality in economics
and finance and still possesses certain desirable properties of the convex function. In recent
decades, much attention has been drawn to quasi-convex optimization [4, 16, 32] and quasi-
convex feasibility problem (QFP) [13, 20, 27], in which the functions involved in (1.1) are
quasi-convex.
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Motivated by its extensive applications, tremendous efforts have been devoted to the devel-
opment of optimization algorithms for solving the feasibility problem (1.1); see [5, 10, 15, 34]
and references therein. One of the most popular approaches is the class of projected subgra-
dient methods, which was originally proposed by Censor and Lent [12] with a cyclic control
scheme. Many extensions of projected subgradient methods have been proposed by employing
several control schemes, and various convergence properties of subgradient methods for solv-
ing the CFP [5, 34] and the QFP [13, 19, 20] have been well explored, including the global
convergence, iteration complexity and linear convergence rate to a feasible solution.

Unfortunately, the projected subgradient method suffers from several disadvantages arising
from the Euclidean projection; see, e.g., [1, 2, 9]. In particular, the Euclidean projection destroys
the nice descent property and might often lead to a zig-zagging effect, resulting in the slow
convergence. Moreover, the Euclidean projection could be computationally expensive if the
feasible set C is not simple. To avoid these disadvantages arising from the Euclidean projection,
one popular approach is to replace the Euclidean projection by the Bregman projection, which is
a proximal mapping on the subgradient-linearized function at current iterate with the Bregman
distance in place of the Euclidean distance.

The Bregman subgradient method is an extension of projected subgradient method, in which
the Bregman projection is adopted in place of the Euclidean projection in the projected sub-
gradient method. The history of the Bregman subgradient method originates in 1983 from the
mirror descent method proposed by Nemirovsky and Yudin [28], which can viewed as a Breg-
man subgradient method with the Kullback-Leibler divergence [6]. Moreover, the Bregman
subgradient method enjoys several advantages: (i) it requires only first-order information, (i-
i) for certain types of constraints and suitable Bregman distance, it generates simple iterative
schemes, and (iii) it exhibits a nearly dimension independent computational complexity in terms
of the problem’s dimension; see, e.g., [1, 2, 6, 7]. Motivated by these advantages of Bregman
subgradient methods, their convergence theory and iteration complexity have been well studied
for constrained convex and quasi-convex optimization problems; see [1, 2, 9] and references
therein.

In this paper, inspired by the idea of Bregman projection, we propose the Bregman quasi-
subgradient methods for solving the QFP (1.1) in a unified framework (see Algorithm 3.1),
which covers most types of control schemes discussed in the literature. The main contribution
of the present paper is to establish the convergence theory, including the global convergence,
iteration complexity and convergence rates, of Bregman quasi-subgradient methods with several
general control schemes for solving the QFP. In particular, the α-most violated constraints
control and the s-intermittent control are considered in this paper. In convergence analysis,
we first establish the global convergence of Bregman quasi-subgradient methods to a feasible
solution of the QFP; see Theorems 3.1 and 3.4. Furthermore, we derive their (worst-case)
iteration complexity to obtain an approximate feasible solution; see Theorems 3.2 and 3.5. More
importantly, we introduce a notion of the Hölder-type bounded error bound property relative to
the Bregman distance for the QFP and use it to explore the linear (or sublinear) convergence
rates of Bregman quasi-subgradient methods to a feasible solution of the QFP; see Theorems
3.3 and 3.6.
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The present paper is organized as follows. In Section 2, we present the notations and some
preliminary lemmas which will be used in this paper. In Section 3, we provide a unified frame-
work of Bregman quasi-subgradient methods with general control schemes to solve the QFP
and establish the convergence theory.

2. NOTATIONS AND PRELIMINARY RESULTS

Notations used in the present paper are standard in the n-dimensional Euclidean space Rn

with inner product ⟨·, ·⟩ and norm ∥·∥. For x ∈Rn and r > 0, we use B(x,r) to denote the closed
ball centered at x with radius r, and use S to denote the unit sphere centered at the origin. For a
convex set Z ⊆ Rn and x ∈ Z, the normal cone of Z at x is defined by

NZ(x) := {y ∈ Rn : ⟨y,z− x⟩ ≤ 0 for any z ∈ Z}.
As usual, we use Rm

+ and Rm
++ to denote the nonnegative orthant and the positive orthant of Rm,

respectively. The positive simplex in Rm is denoted by ∆m
+, that is,

∆m
+ := {λ ∈ Rm

++ :
m

∑
i=1

λi = 1}.

Moreover, we use the notation that a+ := max{a,0} for any a ∈ R, define the positive part
function of f : Rn → R by

f+(x) := max{ f (x),0} for any x ∈ Rn,

and adopt the convention that 0
0 = 0 and ∪i∈ /0Ii = /0 for any family of index sets {Ii}.

A function f : Rn → R is said to be convex, σ -strongly convex and quasi-convex if

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y),

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)− σ
2

α(1−α)∥x− y∥2, and

f (αx+(1−α)y)≤ max{ f (x), f (y)},
respectively, for any x,y ∈ Rn and α ∈ [0,1]. The sublevel sets of f at x are denoted by

lev<f (x) := {y ∈ Rn : f (y)< f (x)} and lev≤f (x) := {y ∈ Rn : f (y)≤ f (x)}.
A convex function can be characterized by the convexity of its epigraph, while the geometrical
interpretation for a quasi-convex function is characterized by the convexity of its sublevel sets.

Proposition 2.1. f : Rn → R is quasi-convex if and only if lev<f (x) (and/or lev≤f (x)) is convex
for each x ∈ Rn.

2.1. Quasi-subdifferential. The subdifferential of a quasi-convex function plays an important
role in quasi-convex optimization. Several specific types of subdifferentials have been intro-
duced and explored for quasi-convex functions that are defined via the “normal cone” to the
level sets; see [3, 20] and references therein. In particular, Kiwiel [25], Censor and Segal
[13], and Hu et al. [21, 22] utilized a quasi-subgradient for developing and analyzing quasi-
subgradient methods.

Definition 2.1. Let h :Rn →R be a quasi-convex function, and let x∈Rn. The quasi-subdifferential
of h at x is defined by

∂ Qh(x) := Nlev<h (x)
(x) = {g : ⟨g,y− x⟩ ≤ 0 for any y ∈ lev<h (x)}.
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It was shown in [22, Lemma 2.1] that each quasi-convex and upper semicontinuous function
has a nontrivial quasi-convex subdifferential; particularly, ∂ Q f (x) contains at least a unit vector
since it is a normal cone to its sublevel set. From Definition 2.1, the quasi-subgradient is not
easy to calculate via estimating a normal vector to the level set. Alternatively, [9, Proposition
3] provides a practical approach for calculating a quasi-subgradient by computing the gradient
at a differentiable point, or the limit of gradients close to a nondifferentiable point.

The notion of Hölder condition has been widely used in economics and management science.
In particular, the Hölder condition of order 1 is reduced to the Lipschitz condition.

Definition 2.2. Let 0 < β ≤ 1 and L > 0. The function f : Rn → R is said to satisfy the Hölder
condition of order β with modulus L on Rn if

| f (x)− f (y)| ≤ L∥x− y∥β for any x,y ∈ Rn.

The Hölder condition was used to provide the following fundamental property of the quasi-
subgradient in [26, Proposition 2.1] and [20, Lemma 2.1], which plays an important role in the
establishment of a basic inequality in convergence analysis of subgradient-type algorithms for
quasi-convex optimization; see, e.g., [21, 22, 23].

Lemma 2.1. Let f : Rn →R be a quasi-convex and continuous function, and C be a closed and
convex set, and let S := {x∈C : f (x)≤ 0}. Let 0< β ≤ 1 and L> 0, and suppose that f satisfies
the Hölder condition of order β with modulus L on Rn. Then for any x ∈ S and y ∈ C \ S, it
holds that

f (y)≤ L⟨g,y− x⟩β for each g ∈ ∂ Q f (y)∩S.

The following two lemmas are useful in the convergence analysis of subgradient methods,
which are taken from [24, Lemma 4.1] and [29, pp. 46, Lemma 6], respectively.

Lemma 2.2. Let ai ≥ 0 for i = 1,2, ...,n. Then the following assertions are true.
(i) If γ ∈ (0,1], then (

n

∑
i=1

ai

)γ

≤
n

∑
i=1

aγ
i ≤ n

(
n

∑
i=1

ai

)γ

.

(ii) If γ ∈ [1,∞), then

1
nγ−1

(
n

∑
i=1

ai

)γ

≤
n

∑
i=1

aγ
i ≤

(
n

∑
i=1

ai

)γ

.

Lemma 2.3. Let r > 0 and b > 0, and {uk} ⊆ R+ be a sequence of nonnegative scalars such
that

uk+1 ≤ uk −bu1+r
k for each k ∈ N.

Then it holds that
uk ≤ u0 (1+ rur

0bk)−
1
r for each k ∈ N.

2.2. Bregman distance. Bregman distance is a type of non-Euclidean distance-like functions,
which has been widely used in the type of Bregman subgradient methods [1, 2, 9]. Let φ :
Rn → R∪ {+∞} be a Legendre function and C ⊆ Rn be a closed and convex set with non-
empty interior, satisfying the following conditions.
(a) φ is proper, lower semicontinuous and convex with domφ ⊆C and dom∇φ = intC.
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(b) φ is σ -strongly convex and continuous on domφ , and continuously differentiable on intC.
Associated to the kernel φ , the Bregman distance Dφ : Rn ×Rn → R+∪{+∞} is defined by

Dφ(x,y) :=
{

φ(x)−φ(y)−⟨∇φ(y),x− y⟩, ∀x ∈C, y ∈ intC,
+∞, otherwise.

(2.1)

By the strong convexity of kernel φ , one has that

Dφ(x,y)≥
σ
2
∥x− y∥2 for any x ∈C, y ∈ intC. (2.2)

Moreover, Bregman distance Dφ enjoys a remarkable three point identity [14, Lemma 3.1] that

Dφ(z,y)+Dφ(y,x)−Dφ(z,x) = ⟨∇φ(x)−∇φ(y),z− y⟩. (2.3)

The Bregman distance from a point x ∈ Rn to a set Z ⊆ Rn is defined by

Dφ(Z,x) := inf
z∈Z

Dφ(z,x).

Example 2.1. Separable Bregman distances are the most commonly used in the literature. In
detail, when C := ∏n

i=1Ci is of separable structure, the Legendre function is written as the
summation of one-dimensional functions

φ(x) :=
n

∑
i=1

θ(xi),

where θ : R→R+∪{+∞} satisfies conditions (a) and (b) on Ci. By the separable structure and
(2.1), one has Dφ(x,y) = ∑n

i=1 Dθ (xi,yi). Several popular Bregman kernels are described as
follows, as well as the generated Bregman distances. In particular, the Euclidean distance, the
Kullback-Leibler divergence and the Itakura-Saito divergence are Bregman distances generated
by the energy, the Boltzmann-Shannon entropy and the Burg entropy, respectively.

(i) Energy: θ(t) := 1
2t2, domθ = R and Dφ(x,y) = 1

2∥x− y∥2.
(ii) Boltzmann-Shannon entropy: θ(t) := t log t, Dφ(x,y) = ∑n

i=1 xi log xi
yi
− xi + yi.

(iii) Burg entropy: θ(t) :=− log t, Dφ(x,y) = ∑n
i=1 log yi

xi
+ xi

yi
−1.

(iv) Fermi-Dirac entropy: θ(t) := t log t +(1− t) log(1− t), Dφ(x,y) = ∑n
i=1 xi log xi

yi
+(1−

xi) log 1−xi
1−yi

.

(v) Hellinger distance: θ(t) :=−
√

1− t2, Dφ(x,y) = ∑n
i=1

1−xiyi√
1−y2

i
−
√

1− x2
i .

(vi) ℓp quasi-norm: θ(t) :=−t p with p ∈ (0,1), Dφ(x,y) = ∑n
i=1−xp

i +(1− p)yp
i + pxiy

p−1
i .

(vii) Fractional power: θ(t) := pt−t p

1−p with p ∈ (0,1), Dφ(x,y) = ∑n
i=1

pyp−1
i (xi−yi)−(xp

i −yp
i )

1−p .

Given Bregman distance Dφ and a closed and convex set V , the Bregman projection mapping
PV : Rn ×Rn → Rn is defined by

PV (g,x) := argmin
z∈V

⟨g,z⟩+Dφ(z,x) for each g ∈ Rn,x ∈ intC. (2.4)

Thanks to the property of Bregman kernel φ , PV (·, ·) is well-defined and is a single-valued
mapping with images in intC (see also [2]). For some choices of φ and V (such as the polyhe-
dron and the nonnegative orthant), the Bregman projection mapping (2.4) can be computed via
a closed formula; one can refer to [1, 2, 8, 9] for detailed examples.

Proposition 2.2. Let x ∈ intC∩V and g ∈ Rn. The following assertions are true.
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(i) PV (0,x) = x.
(ii) ⟨g+∇φ(PV (g,x))−∇φ(x),z−PV (g,x)⟩ ≥ 0 for each z ∈V .

(iii) σ∥x−PV (g,x)∥2 ≤ ⟨g,x−PV (g,x)⟩.
(iv) σ∥x−PV (g,x)∥ ≤ ∥g∥.

Proof. Assertions (i) and (ii) directly follow from the definition and optimality condition of (2.4)
and (2.1), respectively; assertion (iv) immediately follows from assertion (iii) and the Cauchy-
Schwarz inequality. Hence it only remains to show assertion (iii). To this end, it follows from
the σ -strongly convex of Bregman kernel φ that

⟨∇φ(x)−∇φ(y),x− y⟩ ≥ σ∥x− y∥2 for any x,y ∈ intC.

With PV (g,x) in place of y and by assertion (ii) (with x in place of z), the above inequality is
reduced to assertion (iii). The proof is complete. �

3. BREGMAN QUASI-SUBGRADIENT METHOD

Let I := {1,2, ...,m}, and let { fi : i ∈ I} be a family of quasi-convex and continuous functions
defined on Rn, C ⊆ Rn be a closed and convex set with non-empty interior and V ⊆ Rn be a
closed and convex set. In the present paper, we consider the quasi-convex feasibility problem
(QFP) that is to find a feasible point x ∈ Rn such that

x ∈C∩V and fi(x)≤ 0 for each i ∈ I. (3.1)

As usual, we assume that the QFP is consistent, i.e., the solution set of the QFP is nonempty:

S := {x ∈C∩V : fi(x)≤ 0,∀i ∈ I} ̸=∅.

Furthermore, we always assume that each component function of the QFP (3.1) satisfies a
Hölder condition as in the following assumption.

Assumption 3.1. For each i ∈ I, fi satisfies the Hölder condition of order βi ∈ (0,1] with mod-
ulus Li ∈ (0,∞) on C∩V . Moreover, we write

βmin := min
i∈I

βi, βmax := max
i∈I

βi, Lmax := max
i∈I

Li. (3.2)

In particular, the QFP (3.1) is said to be homogeneous if βmin = βmax.

One of the most popular algorithms for solving the feasibility problem (3.1) is a class of
subgradient methods; see [5, 20] and references therein. By employing the Bregman projection
mapping and inspired by the idea of subgradient methods, we propose the Bregman quasi-
subgradient methods for solving the QFP (3.1) in a general framework, stated as follows.

Algorithm 3.1. Select an initial point x1 ∈ C∩V and a sequence of stepsizes {vk} ⊆ (0,+∞)
satisfying

0 < v ≤ vk ≤ v < σ . (3.3)
For each k ∈ N, having xk ∈ Rn, we select a nonempty index set Ik ⊆ I and weights {λk,i}i∈Ik ∈
∆|Ik|
+ , calculate gk,i ∈ ∂ Q fi(xk)∩S for each i ∈ Ik, and update xk+1 by

xk+1 := PV

vk ∑
i∈Ik

λk,i

(
f+i (xk)

Li

) 1
βi

gk,i,xk

 . (3.4)
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Algorithm 3.1 provides a unified framework of Bregman subgradient methods for solving the
QFP. The main computational task in Algorithm 3.1 is the Bregman projection mapping (2.4).
As mentioned above, for some choices of φ and V , the Bregman projection mapping (2.4) can be
computed via a closed formula, and thus the resulting Algorithm 3.1 is particularly attractive.
In the special case when the Bregman kernel is chosen as the energy (see Example 2.1(i)),
the Bregman distance/projection is reduced to the Euclidean distance/projection, and then the
Bregman quasi-subgradient method is reduced to the projected quasi-subgradient method [20]
for solving the QFP. Moreover, it is clear by (3.4) and Proposition 2.2(i) that

the sequence {xi}i>k will terminate at xk whenever it enters S. (3.5)

The following lemma provides a basic inequality of Algorithm 3.1, which shows a significant
property and plays a key tool in convergence analysis of Bregman quasi-subgradient methods.

Lemma 3.1. Let {xk} be a sequence generated by Algorithm 3.1. Then the following basic
inequality holds for each x ∈ S and k ∈ N that

Dφ(x,xk+1)≤ Dφ(x,xk)− vk

(
1− vk

σ

)
∑
i∈Ik

λk,i

(
f+i (xk)

Li

) 2
βi
. (3.6)

Proof. Fix x ∈ S and k ∈ N. We assume, without loss of generality, that xk /∈ S; otherwise,
f+i (xk) = 0 for each i ∈ I, and thus, (3.6) is satisfied automatically by (3.5). By the three point
identity (2.3) and since Dφ ≥ 0, we obtain

Dφ(x,xk+1)−Dφ(x,xk) =−Dφ(xk+1,xk)+ ⟨x− xk+1,∇φ(xk)−∇φ(xk+1)⟩
≤ ⟨x− xk+1,∇φ(xk)−∇φ(xk+1)⟩ (3.7)

≤ vk ∑
i∈Ik

λk,i

(
f+i (xk)

Li

) 1
βi
⟨gk,i,x− xk+1⟩,

where the last inequality follows from (3.4) and Proposition 2.2(ii). Due to Assumption 3.1 and
gk,i ∈ S, we obtain by Lemma 2.1 and Proposition 2.2(iv) the following inequalities

⟨gk,i,xk − x⟩ ≥
(

f+i (xk)

Li

) 1
βi
,

and

⟨gk,i,xk − xk+1⟩ ≤ ∥xk − xk+1∥ ≤
vk

σ ∑
i∈Ik

λk,i

(
f+i (xk)

Li

) 1
βi
, (3.8)

respectively. Consequently, one has

∑
i∈Ik

λk,i

(
f+i (xk)

Li

) 1
βi
⟨gk,i,xk − x⟩ ≥ ∑

i∈Ik

λk,i

(
f+i (xk)

Li

) 2
βi
,

and

∑
i∈Ik

λk,i

(
f+i (xk)

Li

) 1
βi
⟨gk,i,xk − xk+1⟩ ≤

vk

σ

∑
i∈Ik

λk,i

(
f+i (xk)

Li

) 1
βi

2

≤ vk

σ ∑
i∈Ik

λk,i

(
f+i (xk)

Li

) 2
βi
,
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(thanks to {λk,i}i∈Ik ∈ ∆|Ik|
+ and the convexity of ∥ · ∥2). Combining these two inequalities with

(3.7) is reduced to (3.6). The proof is complete. �
To guarantee the convergence property of the Bregman quasi-subgradient method, we shall

assume the following condition on parameters; see [5, Remark 3.13].

Assumption 3.2. There exist µ > 0 such that mini∈Ik λk,i ≥ µ for each k ∈ N.

By virtue of the basic inequality, we show some basic properties of Algorithm 3.1 under
Assumption 3.2.

Lemma 3.2. Let {xk} be a sequence generated by Algorithm 3.1 with {λk,i} satisfying Assump-
tion 3.2, and x ∈ S. Then the following assertions are true.

(i) It holds for each k ∈ N that

Dφ(x,xk+1)≤ Dφ(x,xk)−µv
(

1− v
σ

)
L
− 2

βmin
max ∑

i∈Ik

(
f+i (xk)

) 2
βi . (3.9)

(ii) {Dφ(x,xk)} is monotonically decreasing, and hence {xk} is bounded.

(iii) limk→∞ ∑i∈Ik

(
f+i (xk)

) 2
βi = 0.

Proof. (i) By (3.2), (3.3) and Assumption 3.2, (3.9) directly follows from (3.6).
(ii) (3.9) shows that the sequence {Dφ(x,xk)} is monotonically decreasing, and hence is

bounded. Consequently by (2.2), {∥xk − x∥} is bounded, and so as is {xk}.
(iii) It follows from (3.9) that

∞

∑
k=1

∑
i∈Ik

(
f+i (xk)

) 2
βi ≤ 1

v
(
1− v

σ
)

µ
L

2
βmin
max Dφ(x,x1)< ∞.

This implies that limk→∞ ∑i∈Ik

(
f+i (xk)

) 2
βi = 0.

�
The control sequence of index sets {Ik} plays a central role in guaranteeing convergence prop-

erty and numerical performance of subgradient methods for solving the feasibility problems. In
this paper, we will investigate the convergence theory for Algorithm 3.1 with two general but
popular control schemes; see, e.g., [5, 20].

Definition 3.1. Let α ∈ (0,1] and s ∈ N, and let {xk} be a sequence generated by Algorithm
3.1. We say that {Ik} is
(a) the α-most violated constraints control if, for each k ∈ N, there exists ik ∈ Ik such that

f+ik (xk)≥ α max
i∈I

f+i (xk).

(b) the s-intermittent control if

I = Ik ∪ Ik+1 ∪·· ·∪ Ik+s−1 for each k ∈ N.

For the remainder of this paper, we assume that Assumptions 3.1 and 3.2 are always satisfied,
and establish the convergence theory, including the global convergence, iteration complexity
and convergence rates, of Algorithm 3.1 with the α-most violated constraints control and the
s-intermittent control, respectively.
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3.1. The α-most violated constraints control.

3.1.1. Global convergence. We first establish the global convergence for the Bregman quasi-
subgradient method with the α-most violated constraints control.

Theorem 3.1. Let {xk} be generated by Algorithm 3.1 with {Ik} being the α-most violated
constraints control. Then {xk} converges to a feasible solution of the QFP (3.1).

Proof. Note by Lemma 3.2(ii) that {xk} is bounded, and thus, must have a cluster point, denoted
by x̄. By definition of the α-most violated constraints control (cf. Definition 3.1(a)), for each
k ∈ N,

there exists ik ∈ Ik such that f+ik (xk)≥ α maxi∈I f+i (xk). (3.10)
Then one has by (3.2) and Lemma 3.2(iii) that

lim
k→∞

(
α max

i∈I
f+i (xk)

) 2
βmin ≤ lim

k→∞

(
f+ik (xk)

) 2
βik ≤ lim

k→∞ ∑
i∈Ik

(
f+i (xk)

) 2
βi = 0;

consequently, limk→∞ maxi∈I f+i (xk) = 0, and thus the cluster point x̄ ∈ S by the continuity of
each fi. Recall from Lemma 3.2(ii) that {Dφ(x̄,xk)} is monotonically decreasing and con-
verging to 0. Hence we conclude that {xk} converges to x̄ ∈ S due to (2.2), and the proof is
complete. �

3.1.2. Iteration complexity. Given δ > 0, the iteration complexity of a particular algorithm
is to estimate the number of iterations K required by the algorithm to obtain an approximate
δ -feasible solution, that is,

min
1≤k≤K

max
i∈I

f+i (xk)≤ δ .

Theorem 3.2. Let {xk} be generated by Algorithm 3.1 with {Ik} being the α-most violated

constraints control. Let δ > 0 and Km := Dφ (S,x1)

µv(1− v
σ )

(
Lmax
αδ

) 2
βmin . Then

min
1≤k≤Km

max
i∈I

f+i (xk)≤ δ .

Proof. Proving by contradiction, we assume that maxi∈I f+i (xk)> δ for each 1 ≤ k ≤ Km. Then
it follows from (3.9) (taking x := argminz∈S Dφ(z,xk)) and (3.10) that, for each 1 ≤ k ≤ Km,

Dφ(S,xk+1)≤ Dφ(S,xk)−µv
(

1− v
σ

)
L
− 2

βmin
max

(
f+ik (xk)

) 2
βik

≤ Dφ(S,xk)−µv
(

1− v
σ

)(
α

Lmax
max
i∈I

f+i (xk)

) 2
βmin

. (3.11)

This, together with the assumption that maxi∈I f+i (xk)> δ , implies that

Dφ(S,xk+1)< Dφ(S,xk)−µv
(

1− v
σ

)(
αδ

Lmax

) 2
βmin

.

Summing the above inequality over k = 1, . . . ,Km, we derive that

0 ≤ Dφ(S,xKm+1)< Dφ(S,x1)−Kmµv
(

1− v
σ

)(
αδ

Lmax

) 2
βmin

,
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which yields a contradiction with the definition of Km. The proof is complete. �

3.1.3. Convergence rate analysis. The establishment of convergence rate is significant in guar-
anteeing the numerical performance of relevant algorithms. The error bound property plays an
important role in convergence rate analysis of numerical algorithms; see, e.g., [20, 31, 33]. Be-
low we introduce the Hölder-type error bound relative to a Bregman distance for the QFP (3.1),
and use it to establish convergence rates of Bregman quasi-subgradient methods.

Definition 3.2. The inequality system (3.1) is said to satisfy the Hölder-type bounded error
bound property of order q > 0 relative to the Bregman distance Dφ if, for any r > 0 such that
S∩B(0,r) ̸= /0, there exists κ(r)> 0 such that

Dq
φ(S,x)≤ κ(r)max

i∈I
f+i (x) for each x ∈C∩V ∩B(0,r). (3.12)

In particular, the inequality system (3.1) is said to satisfy the (Lipschitz-type) bounded error
bound property relative to the Bregman distance Dφ if (3.12) holds with q = 1.

Theorem 3.3. Let {xk} be generated by Algorithm 3.1 with {Ik} being the α-most violated
constraints control. Suppose that (3.1) satisfies the Hölder-type bounded error bound property
of order q > 0 relative to the Bregman distance Dφ . Then the following assertions are true.

(i) If 2q = βmin, then {xk} converges to a feasible solution x̄ ∈ S at a linear rate; particularly,
there exist c ≥ 0 and τ ∈ (0,1) such that

∥xk − x̄∥ ≤ cτk for each k ∈ N. (3.13)

(ii) If 2q > βmin, then {xk} converges to a feasible solution x̄ ∈ S at a sublinear rate; particu-
larly, there exists c ≥ 0 such that

∥xk − x̄∥ ≤ ck
− βmin

2(2q−βmin) for each k ∈ N. (3.14)

Proof. By Lemma 3.2(ii) that {xk} is bounded, there exists r > 0 such that {xk} ⊆B(0,r). Then
by the assumption of the Hölder-type bounded error bound property of order q > 0 relative to
the Bregman distance Dφ , there exists κ > 0 such that

Dq
φ(S,xk)≤ κ max

i∈I
f+i (xk) for each k ∈ N. (3.15)

This, together with (3.11), yields that

Dφ(S,xk+1)≤ Dφ(S,xk)−ρ D
2q

βmin
φ (S,xk) for each k ≥ N,

where ρ := µv
(
1− v

σ
)( α

κLmax

) 2
βmin . Hence we derive that there exists c ≥ 0 such that

Dφ(S,xk)≤ c(1−ρ)k if 2q = βmin; Dφ(S,xk)≤ ck
− βmin

2q−βmin if 2q > βmin, (3.16)

by applying Lemma 2.3 (with Dφ(S,xk), ρ , 2q
βmin

−1 in place of uk, b, r), for each k ∈ N.
On the other side, fix l > k and x := argminz∈S Dφ(z,xk). We have by (2.2) that

∥xl − xk∥2 ≤ 2(∥xl − x∥2 +∥xk − x∥2)≤ 4
σ
(Dφ(x,xl)+Dφ(x,xk))≤

8
σ

Dφ(S,xk)
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(thanks to Lemma 3.2(ii)). Hence by the convergence of {xl} to x̄ ∈ S as shown in Theorem 3.1,
we obtain

∥xk − x̄∥2 = lim
l→∞

∥xl − xk∥2 ≤ 8
σ

Dφ(S,xk). (3.17)

This, together with (3.16), implies (3.13) and (3.14), respectively. The proof is complete. �
3.2. The s-intermittent control.

3.2.1. Global convergence.

Theorem 3.4. Let {xk} be generated by Algorithm 3.1 with {Ik} being the s-intermittent control.
Then {xk} converges to a feasible solution of the QFP (3.1).

Proof. Fix x ∈ S and k ∈ N. We assume, without loss of generality, that xsk /∈ S; otherwise, the
conclusion holds automatically by (3.5). By Lemma 3.2(i), we obtain inductively that

Dφ(x,xs(k+1))≤ Dφ(x,xsk)−µv
(

1− v
σ

)
L
− 2

βmin
max

s−1

∑
j=0

∑
i∈Isk+ j

(
f+i (xsk+ j)

) 2
βi . (3.18)

Below we estimate the second term on the right hand side of (3.18) in terms of maxi∈I f+i (xsk).
Let ik ∈ I be the most violated index of inequality system (3.1) at xsk, that is,

f+ik (xsk) = max
i∈I

f+i (xsk)> 0. (3.19)

By the definition of the s-intermittent control (cf. Definition 3.1(b)), there exists jk ∈ [0,s−1]
such that ik ∈ Isk+ jk . By the Hölder condition as in Assumption 3.1, one has

fik(xsk)≤ fik(xsk+ jk)+Lmax∥xsk+ jk − xsk∥βik . (3.20)

Since ik ∈ Isk+ jk , we get

fik(xsk+ jk)≤ ∑
i∈Isk+ jk

f+i (xsk+ jk)≤
s−1

∑
j=0

∑
i∈Isk+ j

f+i (xsk+ j). (3.21)

On the other side, in view of Algorithm 3.1, we obtain by (3.8) that

∥xk+1 − xk∥ ≤
vk

σ ∑
i∈Ik

λk,i

(
f+i (xk)

Li

) 1
βi
≤ ∑

i∈Ik

(
f+i (xk)

Li

) 1
βi

(thanks to (3.3) and λk,i ≤ 1) for each k ∈ N. Then we derive inductively that

∥xsk+ jk − xsk∥ ≤
s−1

∑
j=0

∑
i∈Isk+ j

(
f+i (xsk+ j)

Li

) 1
βi

;

consequently, one has by Lemma 2.2(i) (as βik ≤ 1) that

∥xsk+ jk − xsk∥βik ≤
s−1

∑
j=0

∑
i∈Isk+ j

(
f+i (xsk+ j)

Li

) βik
βi

≤ L
− βmin

βmax
max

s−1

∑
j=0

∑
i∈Isk+ j

(
f+i (xsk+ j)

) βik
βi

(by (3.2)). This, together with (3.19)-(3.21), deduces that

max
i∈I

f+i (xsk)≤
s−1

∑
j=0

∑
i∈Isk+ j

f+i (xsk+ j)+L
1− βmin

βmax
max

s−1

∑
j=0

∑
i∈Isk+ j

(
f+i (xsk+ j)

) βik
βi . (3.22)
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By Lemma 3.2(iii), there exists N ∈ N such that maxi∈Ik f+i (xk)< 1 for each k ≥ N. Fix k ≥ N
s .

Hence we derive by (3.22) that

max
i∈I

f+i (xsk)≤ (1+Lmax)
s−1

∑
j=0

∑
i∈Isk+ j

(
f+i (xsk+ j)

) βmin
βi ;

and then by Lemma 2.2(ii) (as 2
βmin

> 1) that(
max
i∈I

f+i (xsk)

) 2
βmin ≤ (1+Lmax)

2
βmin (ms)

2
βmin

−1
s−1

∑
j=0

∑
i∈Isk+ j

(
f+i (xsk+ j)

) 2
βi .

This, together with (3.18), implies that

Dφ(x,xs(k+1))≤ Dφ(x,xsk)− γ
(

max
i∈I

f+i (xsk)

) 2
βmin

, (3.23)

where we write γ := µv
(
1− v

σ
)
(Lmax + L2

max)
− 2

βmin (ms)
1− 2

βmin , for each k ≥ N
s . Clearly, this

indicates that limk→∞ maxi∈I f+i (xsk) = 0, and thus the cluster point of {xsk} falls in S by the
continuity of each fi. This, together with Lemma 3.2(ii), shows that {xk} converges to this
cluster point in S. The proof is complete. �

3.2.2. Iteration complexity.

Theorem 3.5. Let {xk} be generated by Algorithm 3.1 with {Ik} being the s-intermittent control.

Suppose that (3.1) is homogeneous, i.e., βmin = βmax := β . Let δ > 0 and Kc := Dφ (S,x1)

mµv(1− v
σ )

(
2msLmax

δ

) 2
β .

Then
min

1≤k≤Kc
max
i∈I

f+i (xk)≤ δ .

Proof. By the homogeneous assumption that βmin = βmax = β , (3.22) is reduced to

max
i∈I

f+i (xsk)≤ 2
s−1

∑
j=0

∑
i∈Isk+ j

f+i (xsk+ j).

Consequently, we have by Lemma 2.2(ii) (as 2
β > 1) that(

max
i∈I

f+i (xsk)

) 2
β
≤ 2

2
β (ms)

2
β −1

s−1

∑
j=0

∑
i∈Isk+ j

(
f+i (xsk+ j)

) 2
β ,

and then, (3.18) (taking x := argminz∈S Dφ(z,xsk)) is reduced to

Dφ(S,xs(k+1))≤ Dφ(S,xsk)−µv
(

1− v
σ

)
(2Lmax)

− 2
β (ms)1− 2

β

(
max
i∈I

f+i (xsk)

) 2
β
. (3.24)

Proving by contradiction, we assume that maxi∈I f+i (xk) > δ for each 1 ≤ k ≤ Kc. Then it
follows from (3.24) that, for each 1 ≤ k ≤ Kc

s ,

Dφ(S,xs(k+1))< Dφ(S,xsk)−µv
(

1− v
σ

)
(2Lmax)

− 2
β (ms)1− 2

β δ
2
β .
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Summing the above inequality over k = 1, . . . , Kc
s and by the monotonically decreasing property

of {Dφ(S,xk)} (cf. Lemma 3.2(ii)), we derive that

0 ≤ Dφ(S,xKc+s)< Dφ(S,x1)−
Kc

s
µv
(

1− v
σ

)
(2Lmax)

− 2
β (ms)1− 2

β δ
2
β ,

which yields a contradiction with the definition of Kc. The proof is complete. �

3.2.3. Convergence rate analysis.

Theorem 3.6. Let {xk} be generated by Algorithm 3.1 with {Ik} being the s-intermittent control.
Suppose that (3.1) satisfies the Hölder-type bounded error bound property of order q relative to
the Bregman distance Dφ . Then the following assertions are true.

(i) If 2q = βmin, then {xk} converges to a feasible solution x̄ ∈ S at a linear rate; particularly,
there exist c ≥ 0 and τ ∈ (0,1) such that

∥xk − x̄∥ ≤ cτk for each k ∈ N. (3.25)

(ii) If 2q > βmin, then {xk} converges to a feasible solution x̄ ∈ S at a sublinear rate; particu-
larly, there exists c ≥ 0 such that

∥xk − x̄∥ ≤ ck
− βmin

2(2q−βmin) for each k ∈ N. (3.26)

Proof. We obtain by (3.23) (taking x := argminz∈S Dφ(z,xsk)) that there exist γ > 0 and N ∈ N
such that

Dφ(S,xs(k+1))≤ Dφ(S,xsk)− γ
(

max
i∈I

f+i (xsk)

) 2
βmin

, (3.27)

holds for each k ≥ N
s . By Lemma 3.2(ii) and the assumption of the Hölder-type bounded error

bound property of order q relative to the Bregman distance Dφ , there exists τ > 0 such that
(3.15) is satisfied. This, together with (3.27), yields

Dφ(S,xs(k+1))≤ Dφ(S,xsk)−ρ D
2q

βmin
φ (S,xk) for each k ≥ N

s
,

where we write ρ := γκ− 2
βmin . Hence we derive that there exists c ≥ 0 such that

Dφ(S,xk)≤ c(1−ρ)k if 2q = βmin; Dφ(S,xk)≤ ck
− βmin

2q−βmin if 2q > βmin,

by Lemma 2.3 (with Dφ(S,xsk), ρ , 2q
βmin

−1 in place of uk, b, r), for each k ∈N. These, together
with (3.17) and the decreasing property of {∥xk − x̄∥} as in Lemma 3.2(ii), imply (3.25) and
(3.26), respectively. The proof is complete. �
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