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Abstract The lower-order penalty optimization methods, including the `q minimization method
and the `q regularization method (0 < q ≤ 1), have been widely applied to find sparse solutions
of linear regression problems and gained successful applications in various mathematics and ap-
plied science fields. In this paper, we aim to investigate statistical properties of the `q penalty
optimization methods with randomly noisy observations and a deterministic/random design. For
this purpose, we introduce a general q-Restricted Eigenvalue Condition (REC) and provide its
sufficient conditions in terms of several widely-used regularity conditions such as sparse eigenvalue
condition, restricted isometry property, and mutual incoherence property. By virtue of the q-REC,

we exhibit the `2 recovery bounds of order O(ε2) and O(λ
2

2−q s) for the `q minimization method
and the `q regularization method, respectively, with high probability for either deterministic or
random designs. The results in this paper are nonasymptotic and only assume the weak q-REC.
The preliminary numerical results verify the established statistical properties and demonstrate the
advantages of the `q penalty optimization methods over existing sparse optimization methods.
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1 Introduction

In various areas of applied sciences and engineering, a fundamental problem is to estimate an
unknown parameter β∗ ∈ Rn of a linear regression model

y = Xβ∗ + e, (1)

where X ∈ Rm×n is a design matrix and y ∈ Rm is an observation vector with random noise
e ∈ Rm. In this paper, we assume that the random noise is Gaussian noise, i.e., e ∼ N (0, σ2Im).
According to the context of practical applications, the design matrix could be either deterministic
or random.

The curse of dimensionality always occurs in many application problems. For example, in mag-
netic resonance imaging [9], portfolio selection [38], systems biology [39], one is only able to collect
limited samples of experimental data due to physical or economical constraints, i.e., m � n. In
the high-dimensional scenario, it is a vital challenge to estimate the true underlying parameter of
problem (1) because the corresponding linear system is seriously ill-conditioned and has infinitely
many solutions.

1.1 `1 penalty optimization methods

Fortunately, in practical applications, a wide class of problems usually have certain special
structures, which could help to eliminate the nonidentifiability and enhance the predictability. One
of the most popular structures is the sparsity structure. One common way to measure the sparsity
is the `q norm, which is defined by

‖β‖q :=

(
n∑
i=1

|βi|q
)1/q

for 0 < q ≤ 1,

and ‖β‖0 is defined by the number of nonzero entries of β.
We first discuss the case when the design matrix X is deterministic. In the presence of a bounded

noise (i.e., ‖e‖2 ≤ ε), in order to find the sparest solution, [18] proposed the following (constrained)
`0 minimization problem:

(CP0,ε) min ‖β‖0 s.t. ‖y −Xβ‖2 ≤ ε.

Unfortunately, it is NP-hard to compute its global solution due to the nonconvex and combinational
natures [36].

To overcome this obstacle, a common technique is to use the (convex) `1 norm to approach the
`0 norm:

(CP1,ε) min ‖β‖1 s.t. ‖y −Xβ‖2 ≤ ε,

which can be efficiently solved by convex optimization algorithms; see [14,21] and references there-
in. In the practical applications, the amplitude of noise is usually difficult to estimate. In such
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situations, the regularization method is a practical technique to avoid the noise estimation and has
been widely used in optimization and statistics. Specifically, the `1 regularization problem is

(RP1,λ) min
1

2m
‖y −Xβ‖22 + λ‖β‖1,

where λ > 0 is the regularization parameter, providing a tradeoff between data fidelity and sparsity.
The `1 regularization problem, also named the least absolute shrinkage and selection operator
(Lasso) in statistics [46], has attracted a great deal of attention in variable selection and gained
wide applications in the high-dimensional scenario; see [2, 15] and references therein. In order to
investigate the statistical properties of (CP1,ε) and (RP1,λ), researchers have proposed several
types of regularity conditions as follows.

Definition 1 (Restricted Isometry Constants (RICs), [10]). (i) The s-restricted isometry con-
stant of X is denoted by ηs(X) and defined to be the smallest quantity such that, for any
β ∈ Rn and J ⊆ {1, . . . , n} with |J | ≤ s,

(1− ηs(X))‖βJ‖22 ≤ ‖XβJ‖22 ≤ (1 + ηs(X))‖βJ‖22. (2)

(ii) The (s, t)-restricted orthogonality constant of X is denoted by θs,t(X) and defined to be the
smallest quantity such that, for any β ∈ Rn and J, T ⊆ {1, . . . , n} with |J | ≤ s, |T | ≤ t and
J ∩ T = ∅,

|〈XβJ , XβT 〉| ≤ θs,t(X)‖βJ‖2‖βT ‖2. (3)

Definition 2 (Mutual Incoherence Constant (MIC), [19]). The mutual incoherence constant of X
is denoted by M(X) and defined as

M(X) = sup{|X>·jX·i| : ∀1 ≤ i, j ≤ n}.

Definition 3 (Restricted Eigenvalue Condition (REC), [3]). X is said to satisfy the restricted
eigenvalue condition if

min
δ∈Rn:δ 6=0

{
‖Xδ‖2√

m‖δJ∪J(δ;t)‖2
: |J | ≤ s, ‖δJc‖1 ≤ a‖δJ‖1

}
> 0,

where a > 0 and (s, t) are a pair of integers such that 1 ≤ s ≤ t ≤ n, s+ t ≤ n, and J(δ; t) refers
to the index set corresponding to the first t largest coordinates in absolute value of δ in Jc.

Definition 4 (Sparse Eigenvalue Condition (SEC), [17]). The s-sparse minimal eigenvalue and
s-sparse maximal eigenvalue of X are respectively defined by

σmin(s,X) := min
β∈Rn:1≤‖β‖0≤s

β>X>Xβ

β>β
, σmax(s,X) := max

β∈Rn:1≤‖β‖0≤s

β>X>Xβ

β>β
. (4)

Conditions that the RIC or MIC is less than some positive constant are usually referred to the
Restricted Isometry Property (RIP) or the Mutual Incoherence Property (MIP), respectively. It
was claimed in [7] that the RIP can be implied by the MIP, while the RIC is more difficult to be
calculated than the MIC. It was also reported in [3] that the REC can be implied by the RIP, and
in [41] that a broad class of correlated Gaussian design matrices satisfy the REC but violate the
RIP with high probability.
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An important statistical property is the `2 recovery bound property, which aims to estimate
an upper bound of the error between the global solution of the optimization problem and the
true underlying parameter in terms of the noise level ε. More specifically, let s � n and β∗ be
an s-sparse solution of the linear regression problem (1). The `2 recovery bound of (CP1,ε) was
provided in [9] and [18] under the RIP and MIP, respectively; that is

‖β̄1,ε − β∗‖22 = O(ε2),

where β̄1,ε stands for the global solution of (CP1,ε). In the noise-free case, the `2 recovery bound
of (RP1,λ) was provided in [24] under the RIP or the REC:

‖β̂1,λ − β∗‖22 = O(λ2s),

where β̂1,λ denotes the global solution of (RP1,λ). Furthermore, when the noise is normally dis-
tributed as e ∼ N (0, σ2Im), it was established in [3, 5, 52] that the following `2 recovery bound
holds with high probability under the RIP, REC or other regularity conditions:

‖β̂1,λ − β∗‖22 = O

(
σ2s

log n

m

)
,

when the regularization parameter is chosen as λ = σ
√

logn
m . However, the `1 penalty optimization

methods, including the `1 minimization method and the `1 regularization method, suffer from
several dissatisfactions in both theoretical properties and practical applications. In detail, it was
reported by extensive theoretical and empirical studies that the `1 penalty optimization methods
suffer from significant estimation bias when parameters have large absolute values; the induced
solution is much less sparse than the true parameter leading to sub-optimal sparsity in practice;
they cannot recover a sparse signal with the least samples when applied to compressed sensing; see,
e.g., [12, 20, 25, 29, 47, 49]. Therefore, there is a great demand for developing an alternative sparse
estimation technique that enjoys nice statistical theory and successful applications.

1.2 `q penalty optimization methods

To address the bias and the sub-optimal issues induced by the `1 penalty optimization methods,
several nonconvex regularizers have been proposed to improve the sparsity-promoting capability.
One of the most important nonconvex approaches is the `q (0 < q < 1) penalty optimization
methods:

(CPq,ε) min ‖β‖q s.t. ‖y −Xβ‖2 ≤ ε,

and

(RPq,λ) min
1

2m
‖y −Xβ‖22 + λ‖β‖qq.

The numerical results in [12] and [47] showed that the `q minimization and the ` 1
2

regularization
methods admit a significantly stronger sparsity-promoting capability than the `1 minimization
and the `1 regularization methods, respectively, in the sense that they allow to obtain a more
sparse solution from a smaller amount of samples. [39] revealed that the ` 1

2
regularization method

achieved a more reliable biological solution than the `1 regularization method in gene regulatory
network inference. In view of the lower-order penalty methods as investigated in [6, 28, 33, 48], a
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main advantage of the lower-order penalty functions over the classical `1 penalty functions is that
they require weaker conditions to guarantee an exact penalization property and that their least
exact penalty parameter is smaller. Nowadays, the `q penalty optimization methods have widely
applied and gained successful applications in a wide range of fields.

The advantage of the `q penalty optimization methods has also been shown in theory that they
require a weaker regularity condition to guarantee the stable statistical property than the classical
`1 penalty optimization methods. In detail, let β̄q,ε and β̂q,λ denote the global solution of the `q
constrained minimization problem (CPq,ε) and the `q regularization problem (RPq,λ), respectively.
The `2 recovery bound of (CPq,ε) was established in [16] and [45] under MIP (cf. Definition 2) and
RIP (cf. Definition 1), respectively, that

‖β̄q,ε − β∗‖22 = O(ε2), (5)

where the MIP or RIP is weaker than the one for (CP1,ε). [27] established an `2 recovery bound
of (RPq,λ) in the noise-free case that

‖β̂q,λ − β∗‖22 = O(λ
2

2−q s) (6)

under an introduced q-REC, which is weaker than the classical REC (cf. Definition 3). However,
the theoretical study for the `q penalty optimization methods is still limited; particularly, there is
still no paper devoted to establishing the recovery bound property of the `q minimization method
when the noise is randomly distributed, and that of the `q regularization method in the noise-aware
case.

Besides the `q penalty optimization methods, there are several popular nonconvex regularizers,
including the Smoothly Clipped Absolute Deviation (SCAD) [20], Minimax Concave Penalty (M-
CP) [49], Folded Concave Penalty (FCP) [30], and capped `1 norm [32]. Specifically, fixing a > 2
and b > 0, the SCAD regularizer is defined as RSCAD,λ(β) :=

∑n
j=1 fSCAD,λ(βj) with

fSCAD,λ(t) :=


λ|t|, if |t| ≤ λ,
− t

2−2aλ|t|+λ2

2(a−1) , if λ < |t| ≤ aλ,
(a+1)λ2

2 , if |t| > aλ,

(7)

and the MCP regularizer is defined as RMCP,λ(β) :=
∑n
j=1 fMCP,λ(βj) with

fMCP,λ(t) :=

{
λ|t| − t2

2b , if |t| ≤ bλ,
bλ2

2 , if |t| > bλ,
(8)

In particular, SCAD and MCP fall into the category of FCP defined asRFCP,λ =
∑n
j=1 fFCP,λ(|βj |),

where fFCP,λ(·) is defined on [0,∞) and satisfies the following assumption.

Assumption 1.

(i) fFCP,λ(t) is increasing and concave in t ∈ [0,∞) with fFCP,λ(0) = 0;
(ii) fFCP,λ(t) is differentiable in t ∈ (0,∞) with f ′FCP,λ(0+) ≥ a1λ;
(iii) f ′FCP,λ(t) ≥ a1λ for t ∈ (0, a2λ];
(iv) f ′FCP,λ(t) = 0 for t ∈ [aλ,∞) with a pre-specified constant a > a2.

It was studied in [51] that the global solution of the FCP linear regression enjoys the oracle
property under the SEC (cf. Definition 4). Nevertheless, the `q penalty optimization methods are
beyond the category of the FCP considered in [51]; consequently, this work is not applicable to
provide the oracle property for the `q penalty optimization methods.
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1.3 Contributions of this paper

The main contribution of this paper is to establish the statistical properties of the `q penal-
ty optimization methods, including the `q constrained minimization problem (CPq,ε) and the `q
regularization problem (RPq,λ), in the noise-aware case; specifically, in the case when the linear
regression model (1) involves a Gaussian noise as e ∼ N (0, σ2Im). For this purpose, we first extend
the q-REC [27] to a more general one, which is one of the weakest regularity conditions to ensure
the `2 recovery bounds of sparse regression models, and provide some sufficient conditions for guar-
anteeing the general q-REC in terms of REC, RIP, and MIP (with a less restrictive constant); see
Propositions 1 and 2. Under the general q-REC, we show that the `2 recovery bounds (5) and

‖β̂q,λ − β∗‖22 = O

((
σ2 log n

m

) 1
2−q

s

)

hold with high probability for (CPq,ε) and (RPq,λ), respectively; see Theorems 1 and 2. These
results provide a unified framework for the statistical properties of the `q penalty optimization
methods, and improve the ones of the `q minimization method [16, 45] and the `1 regularization
method [3,5,52] under a weak q-REC; see Remark 5. They are not only of independent interest in
establishing statistical properties of the lower-order penalty optimization methods with randomly
noisy data, but also provide a useful tool for the study of the random design case.

Another contribution of the present paper is to explore the `2 recovery bounds of the `q penalty
optimization methods with a random design matrix X and random noise e. This case is more
realistic in real-world applications; e.g., compressed sensing [8], signal processing [9], statistical
learning [1]. Motivated by real-world applications, we consider the common case when X is a
Gaussian random design with i.i.d. N (0, Σ) rows. For this case, we explore a sufficient condition
for ensuring the q-REC of X with high probability by virtue of Σ, and apply the preceding results
to establish the `2 recovery bounds (5) and (6) for (CPq,ε) and (RPq,λ), respectively; see Theorems
3 and 4. These results provide a unified framework for the statistical properties of the `q penalty
optimization methods with a Gaussian random design under the q-REC, which cover the ones of
the `1 penalty optimization methods (see [53, Theorem 3.1]) as special cases; see Corollaries 3 and
4. To the best of our knowledge, most results presented here are new, either for the deterministic
or random design.

We also carry out numerical experiments on standard simulated data. The preliminary numer-
ical results verify the established statistical properties and show that the `q penalty optimization
methods possess better recovery performance than the `1 penalty optimization methods, SCAD
(7) and MCP (8), which coincides with existing numerical studies [27,47] on the `q regularization
method.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the lower-order
REC and discuss its sufficient conditions. The `2 recovery bounds for the `q penalty optimization
methods with the deterministic and random designs are presented in Sects. 3 and 4, respectively.
The preliminary numerical results are illustrated in Sect. 5. Preliminary results and technical proofs
of are deferred to Appendix.

We end this section by presenting the notations adopted in this paper. We use Greek lowercase
letters α, β, δ to denote the vectors, capital letters J , T to denote the index sets, and script capital
letters A , B, C to denote the random events. For β ∈ Rn and J ⊆ {1, 2, . . . , n}, we use βJ to
denote the vector in Rn with (βJ)i = βi for i ∈ J and zero elsewhere, |J | to denote the cardinality
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of J , Jc to denote the complement of J , and supp(β) to denote the support of β, i.e., the index
set of nonzero entries of β. For a matrix X ∈ Rm×n, let Xij (i = 1, . . . ,m, j = 1, 2, · · · , n) denote
its (i, j)-th entry, Xi· (i = 1, . . . ,m) denote its i-th row, X·j (j = 1, 2, · · · , n) denote its j-th
column. As usual, Im stands for the identity matrix in Rm×m, and P(A ) and P(A |B) denote the
probability of event A and the conditional probability event A provided event B, respectively.
Throughout the whole paper, we always assume that 0 < q ≤ 1 unless otherwise specified.

2 Restricted eigenvalue conditions

This section aims to discuss some regularity conditions imposed on the design matrix that are
required to guarantee the stable statistical properties of the `q constrained minimization problem
(CPq,ε) and the `q regularization problem (RPq,λ).

The ordinary least squares (OLS) is a classical technique to estimate the unknown parameters
in a linear regression (1) and has favourable properties if some regularity conditions are satisfied;
see, e.g., [40]. For example, the OLS always requires the positive definiteness of the Gram matrix
X>X, that is,

min
β∈Rn:β 6=0

(β>Xβ)1/2

‖β‖2
= min
β∈Rn:β 6=0

‖Xβ‖2
‖β‖2

> 0. (9)

However, the OLS does not work well in the high-dimensional scenario because the associated
Gram matrix is always seriously degenerate, i.e.,

min
β∈Rn:β 6=0

‖Xβ‖2
‖β‖2

= 0.

To deal with the challenges caused by the high-dimensional data, the `1 regularization method
(also named Lasso) was introduced by [46] and has gained a great success in sparse representation
of high-dimensional data; see, e.g., [3, 23, 52] and references therein. It was pointed out that the
`1 regularization method requires a weak REC (cf. Definition 3) [3] to ensure nice statistical
properties; see, e.g., [24, 31, 37]. In the definition of REC, the minimum in (9) is replaced by a
minimum over a restricted set of vectors measured by an `1 norm inequality, and the norm ‖β‖2 in
the denominator is replaced by the `2 norm of only a part of β. The notion of REC was extended
to the group-wised lower-order REC in [27], which was used there to explore the oracle property
and `2 recovery bound of the `p,q regularization problem in the noise-free case.

Inspired by the ideas in [3] and [27], we here introduce a lower-order REC for the `q optimization
problems, similar to but more general than the one in [27], where the minimum is taken over a
restricted set of vectors measured by an `q norm inequality. To proceed, we shall introduce some
notations used in the lower-order REC. In the remainder of this paper, let a > 0 and (s, t) be a
pair of integers such that

1 ≤ s ≤ t ≤ n and s+ t ≤ n. (10)

For δ ∈ Rn and J ⊆ {1, 2, . . . , n}, we define by J(δ; t) the index set corresponding to the first t
largest coordinates in absolute value of δ in Jc. For X ∈ Rm×n, its q-restricted eigenvalue modulus
relative to (s, t, a) is defined by

φq(s, t, a,X) := min
δ∈Rn:δ 6=0

{
‖Xδ‖2√

m‖δJ∪J(δ;t)‖2
: |J | ≤ s, ‖δJc‖qq ≤ a‖δJ‖qq

}
. (11)
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Definition 5 (q-Restricted Eigenvalue Condition (q-REC)). Let 0 ≤ q ≤ 1 and X ∈ Rm×n. X is
said to satisfy the q-restricted eigenvalue condition relative to (s, t, a) (q-REC(s, t, a) for short) if

φq(s, t, a,X) > 0.

Remark 1. Clearly, the q-REC(s, t, a) in Definition 5 provides a unified framework for the REC-
type conditions, e.g., it includes the classical REC in [3] (when q = 1) and the q-REC(s, t) in [27]
(when a = 1) as special cases. Particularly, the q-REC(s, t, a) extends the classical REC (that is
q = 1) in [3] to the lower-order case, where the latter one is weaker (see Proposition 1 below) and
applicable to establish nice statistical properties of the `q sparse optimization problems. Moreover,
the q-REC(s, t, a) in Definition 5 is an extension of the q-REC (that is a = 1) in [27] to the
general a > 0, where the latter one with a > 1 is stronger but required for the establishment of
nice statistical properties for the `q regularization problem of noisy linear regression. (The q-REC
in [27] was applied there to explore the oracle property and recovery bound for the `q regularization
in the noiseless case.) This is because, in the noisy case, the dominant property (24) in Proposition
4 is satisfied only when a > 1.

It is natural to study the relationships between the q-RECs and other types of regularity
conditions. First, by extending [27, Proposition 5] to the general q-REC, we validate the relationship
between the q-RECs in the following proposition: the lower the q, the weaker the q-REC. However,
the inverse of this implication is not true; see [27, Example 1] for a counter example.

Proposition 1. Suppose that 0 < q1 ≤ q2 ≤ 1 and that X satisfies the q2-REC(s, t, a). Then X
satisfies the q1-REC(s, t, a).

It is revealed from Proposition 1 that the classical REC is a sufficient condition for the lower-
order REC. In the sequel, we will further discuss some other types of regularity conditions: SEC
(cf. Definition 4), RIP (cf. Definition 1), and MIP (cf. Definition 2), to ensure the lower-order REC.

The SEC is a popular regularity condition to guarantee nice properties of sparse representation;
see [3, 17, 51] and references therein. The SEC was first introduced in [17] to show that the global
solution of (CP1,ε) approximates that of (CP0,ε) whenever σmin(2s,X) > 0. The RIP is a well-
known regularity condition in the scenario of sparse learning, which was introduced by [10] and
has been widely used in the study of oracle property and recovery bound for the high-dimensional
regression model; see [3, 9, 43] and references therein. The MIP is another well-known regularity
condition in the scenario of sparse learning, which was introduced by [19] and has been used
in [3, 7, 17, 18] and references therein. In the case when each diagonal element of X is 1, θ1,1(X)
coincides with the MIC; see [19].

The following proposition provides the sufficient conditions for the q-REC in terms of SEC,
RIP and MIP; see terms (a), (b) and (c) below respectively.

Proposition 2. Let X ∈ Rm×n, 0 < q ≤ 1, a > 0, and (s, t) be a pair of integers satisfying (10).
Then X satisfies the q-REC(s, t, a) provided one of the following conditions:

(a) σmin(s+ t,X) > a
(
as
t

) 2
q−1 σmax(t,X).

(b) ηt(X) + θs,t(X) + a
1
2

(
as
t

) 1
q−

1
2 θt,s+t(X) < 1.

(c) each diagonal element of Γm(X) is 1 and θ1,1(X) < 1
s+t

(
1 + 2a

(
as
t

) 1
q−1
)−1

.

Remark 2. It was established in [3, Lemma 4.1(ii)], [24, Corollary 7.1 and 3.1] and [3, Assumption
5] that X satisfies the classical REC under one of the following conditions:
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(a’) σmin(s+ t,X) > s
ta

2σmax(t,X).

(b’) ηt(X) + θs,t(X) +
(
s
t

) 1
2 aθt,s+t(X) < 1.

(c’) each diagonal element of X is 1 and θ1,1(X) < 1
(s+t)(1+2a) .

Proposition 2 extends these results to the general case when 0 < q ≤ 1 and partially improves
them; in particular, each of conditions (a)-(c) in Proposition 2 required for the q-REC is less
restrictive than the corresponding one of conditions (a’)-(c’) required for the classical REC in the
situation when a < t/s, which usually occurs in the high-dimensional scenario (see, e.g., [3,9,53]).
Moreover, by Propositions 1 and 2, we achieve that the q-REC(s, t, a) is satisfied provided that one
of the following conditions:

(a◦) σmin(s+ t,X) > min
{

1,
(
as
t

) 2
q−2
}
s
ta

2σmax(t,X).

(b◦) ηt(X) + θs,t(X) + min
{

1,
(
as
t

) 1
q−1
}(

s
t

) 1
2 aθt,s+t(X) < 1.

(c◦) each diagonal element of X is 1 and θ1,1(X) < 1
s+t

(
1 + 2amin

{
1,
(
as
t

) 1
q−1
})−1

.

3 Recovery bounds for deterministic design

This section is devoted to establishing the `2 recovery bounds for the `q constrained minimiza-
tion problem (CPq,ε) and the `q regularization problem (RPq,λ) in the case when X is deterministic.
Recall that e ∼ N (0, σ2Im), and adopt the following notations:

let β∗ be a solution of (1), J := supp(β∗), s := |J |, and let t ∈ N satisfy (10).

The `2 recovery bound of the `1 regularization problem was established in [3] under the classical
REC (cf. Definition 3). The deduction is based on an important property of the global solution.

More precisely, let β̄1,ε and β̂1,λ be the global solutions of the `1 minimization problem and the `1
regularization problem, respectively. It was reported in [9, Eq. (2.2)] and [3, Corollary B.2] that
the corresponding residuals satisfy the following dominant properties with high probability,

‖(β̄1,ε − β∗)Jc‖1 ≤ ‖(β̄1,ε − β∗)J‖1

and

‖(β̂1,λ − β∗)Jc‖1 ≤ 3‖(β̂1,λ − β∗)J‖1
for the `1 minimization problem and the `1 regularization problem, respectively. Here the term
“high probability” means that the probability tends to 1 as long as the sample size m and/or the
problem dimension n tend to infinity.

In the study of the `q penalty optimization methods, a natural question arises whether the
residuals of global solutions of the `q constrained minimization problem (CPq,ε) or the `q regular-
ization problem (RPq,λ) satisfy such a dominant property on the support of the true underlying
parameter of linear regression (1) with high probability. Below, we provide a positive answer for
this question in Propositions 3 and 4.

To this end, some useful notations are provided. In the remainder of this paper, let

a > 1, 0 ≤ θ < 1, b ≥ 0, (12)
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unless otherwise specified, and let r > 0 be such that

r ≥ ‖β∗‖q. (13)

Let

ε := σ
√

5m and ρ :=

(
5σ2

2λ
+ rq

)1/q

, (14)

and select the regularization parameter in (RPq,λ) as

λ = max

{
a+ 1

a− 1
σ(1 + θ)21−q(1 + rq)

1−q
q

√
2(1 + b) log n

m
,

5

2
σ2

}
. (15)

Define the following two random events relative to linear regression model (1) by

A := {e : ‖e‖2 ≤ ε} (16)

and

B :=

{
e :

a+ 1

(a− 1)m
(2ρ)1−q‖X>e‖∞ ≤ λ

}
. (17)

The following lemma estimates the probabilities of events A and B. From (18) and (21), one
can see that the events A and A ∩B happen with probability achieving 1 as long as the sample
size m and/or the problem dimension n tend to infinity.

Lemma 1. The probability of event A satisfies

P(A ) ≥ 1− exp(−m). (18)

Moreover, suppose that X satisfies

max
1≤j≤n

‖X·j‖2 ≤ (1 + θ)
√
m. (19)

Then

P(B) ≥ 1−
(
nb
√
π log n

)−1
, (20)

P(A ∩B) ≥ 1− exp(−m)−
(
nb
√
π log n

)−1
. (21)

We show in the following two propositions that the global solutions of the `q constrained
minimization problem (CPq,ε) and the `q regularization problem (RPq,λ) satisfy the dominant
property on the support of the true underlying parameter with high probability:

‖(β̂ − β∗)Jc‖qq ≤ c‖(β̂ − β∗)J‖qq

with c = 1 or c = a, respectively.

Proposition 3. Let β̄q,ε be a global solution of (CPq,ε) with ε given by (14). Then it holds under
the event A that

‖(β̄q,ε − β∗)Jc‖q ≤ ‖(β̄q,ε − β∗)J‖q. (22)
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Proposition 4. Let β̂q,λ be a global solution of (RPq,λ) with λ given by (15). Suppose that (19)
is satisfied. Then

‖β̂q,λ − β∗‖1 ≤ (2ρ)1−q‖β̂q,λ − β∗‖qq (23)

under the event A , and

‖(β̂q,λ − β∗)Jc‖qq ≤ a‖(β̂q,λ − β∗)J‖qq (24)

under the event A ∩B.

Remark 3. By Lemma 1, Propositions 3 and 4 show that (22) holds with probability at least

1 − exp(−m), and (24) holds with probability at least 1 − exp(−m) −
(
nb
√
π log n

)−1
if (19) is

satisfied, respectively.

By virtue of Lemma 1 and Proposition 3, one of the main theorems of this section is as follows,
in which we establish the `2 recovery bound for the `q constrained minimization problem (CPq,ε)
under the weak q-REC (cf. Definition 5). This theorem shows that one can stably recover the
underlying parameter with high probability via solving the `q constrained minimization problem
when the design matrix satisfies the weak q-REC.

Theorem 1. Let β̄q,ε be a global solution of (CPq,ε) with ε given by (14). Suppose that X satisfies
the q-REC(s, t, a) with a ≥ 1. Then, with probability at least 1− exp(−m), we have that

‖β̄q,ε − β∗‖22 ≤
4
(

1 +
(
s
t

) 2
q−1
)

mφ2q(s, t, a,X)
ε2. (25)

Remark 4. (i) As shown in Proposition 3, the global solution of the `q constrained minimization
problem (CPq,ε) satisfies the dominant property on the support of the true underlying parameter
with high probability, in which the coefficient in the right hand side of (22) is 1. Thus the q-
REC(s, t, a) with a = 1 is enough to guarantee the recovery bound results. Particularly, in the
special case when a = 1, the q-REC(s, t, 1) is a weaker condition and (25) provides a tighter bound
than the ones as a > 1. This phenomenon also occurs for Theorem 3 and Corollaries 1 and 3.

(ii) In the special case when the underlying data is noise-free, Theorem 1 shows that (CPq,ε)
can exactly predict the parameter of the linear regression with high probability under the lower-
order REC. For the realistic scenario where the measurements are noisy, Theorem 1 illustrates
the stable recovery capability of (CPq,ε) in the sense that its global solution approaches to the true
sparse parameter within a tolerance proportional to the noise level with high probability. Moreover,
Theorem 1 establishes the `2 recovery bound of order O(ε2) under the q-REC, which is weaker
than the RIP-type or MIP-type condition used in [16, 45] to obtain the same `2 recovery bound of
(CPq,ε), respectively.

As a special case of Theorem 1 when q = 1, the following corollary presents the `2 recovery
bound of the `1 minimization problem (CP1,ε) as

‖β̄1,ε − β∗‖22 = O(ε2) (26)

under the classical REC. This result improves the ones in [7, 9] under a weaker assumption, in
which the `2 recovery bound (26) was obtained under the RIP-type conditions.
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Corollary 1. Let β̄1,ε be a global solution of (CP1,ε) with ε given by (14). Suppose that X satisfies
the 1-REC(s, t, a) with a ≥ 1. Then, with probability at least 1− exp(−m), we have that

‖β̄1,ε − β∗‖22 ≤
1 + s

t

mφ21(s, t, a,X)
4ε2.

The other main theorem of this section is as follows, in which we exploit the statistical properties
of the `q regularization problem (RPq,λ) under the q-REC. The results include the estimation of
prediction loss and recovery bound of parameter approximation, and also the oracle property, which
provides an upper bound on the prediction loss plus the violation of false variable selection.

Theorem 2. Let β̂q,λ be a global solution of (RPq,λ) with λ given by (15). Suppose that X satisfies
the q-REC(s, t, a) with a > 1 and that (19) is satisfied. Then, with probability at least 1−exp(−m)−(
nb
√
π log n

)−1
, we have that

1

m
‖Xβ̂q,λ −Xβ∗‖22 ≤

(
2aλ

φqq(s, t, a,X)

) 2
2−q

s, (27)

1

2m
‖Xβ̂q,λ −Xβ∗‖22 + λ‖(β̂q,λ)Jc‖qq ≤

(
2
q
2 aλ

φqq(s, t, a,X)

) 2
2−q

s, (28)

‖β̂q,λ − β∗‖22 ≤
(

1 + a
2
q

(s
t

) 2
q−1
)(

2aλ

φ2q(s, t, a,X)

) 2
2−q

s. (29)

Remark 5. (i) Theorem 2 provides a unified framework for the statistical properties of the `q
regularization problem under the weak q-REC that is one of the weakest regularity conditions in
the literature, in which each of the obtained estimations depends on the noise amplitude and sample

size. In particular, for the regularization parameter scaling as λ � max

(
σ
√

logn
m , σ2

)
1 (cf. (15)),

Theorem 2 indicates the prediction loss and the `2 recovery bound of (RPq,λ) scale as

1

m
‖Xβ̂q,λ −Xβ∗‖22 = O

((
σ2 log n

m

) 1
2−q

s

)
,

and

‖β̂q,λ − β∗‖22 = O

((
σ2 log n

m

) 1
2−q

s

)
. (30)

Though the rate (30) in the case q < 1 is not as good as that of the `1 regularization method, the
required regularity condition is substantially weaker. Specifically, for problems where the q-REC
is satisfied but not the classical REC, the recovery bound of the `1 regularization method may
violate and lead to a false estimation while the `q regularization method still works and produces a
comprehensive estimation; see Example C.1 in Appendix.

(ii) Theorem 2 obtains the recovery bound of the `q regularization method under the assumption
of general q-REC(s, t, a), which covers (and improves) the one for the `1 regularization method
in [3] as a special case when q = 1 and a = 3. From (11) and (27)-(29), we can see that the

1 For two functions f and g, we use f � g to denote that f = cg for a universal positive constant c.
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larger the value of a, the smaller the value of φq(s, t, a,X), and thus the stronger condition the
q-REC(s, t, a) is and the looser bounds obtained in Theorem 2. Hence Theorem 2 can be understood
that the bounds of (27)-(29) holds as a→ 1 whenever the q-REC(s, t, a) is satisfied for some a > 1.
In fact, when a stronger q-REC(s, t, a) is satisfied with a larger value of a, the estimated result of
the regularization problem may be better; see Example C.2 in Appendix.

(iii) It was shown in [51] that the global solution of the FCP (cf. Assumption 1) sparse linear
regression, including the SCAD (cf. (7)) and MCP (cf. (8)) as special cases, has an `2 recovery
bound O(λ2s) under the SEC. Though the recovery bounds are slightly better than (30), the condition
required is substantially stronger than the q-REC. In [51], the authors also established the oracle
property of the `0 regularization method under the SEC; while its `2 recovery bound cannot be
guaranteed in their work. We shall see in section 5 that the `q regularization method performs
better in parameter estimation than either the SCAD/MCP or the `0 regularization method via
several numerical experiments.

(iv) [34, 35] considered the following `0 optimization problems

min ‖β‖0, s.t.

∥∥∥∥ 1

m
X>(y −Xβ)

∥∥∥∥
∞
≤ ε, (31)

and

min
1

2m
‖y −Xβ‖22 + λ‖β‖p, s.t. ‖β‖0 ≤ s (p = 1 or 2). (32)

[34] provided the `2 recovery bound of order O(ε2) for problem (31) under the SEC-type condition,
which is stronger than the q-REC; see Proposition 2. [35] established the prediction loss of order
O(σ
√

log n‖β∗‖1) and O(σ
√
s log n‖β∗‖2) for problem (32) when p = 1 and p = 2, respectively.

However, the `2 recovery bound was not obtained yet therein.

Remark 6. Recently, some works concerned the statistical property of the local minimum of some
nonconvex regularization methods; see [30, 32].

(i) [32] studied the `2 recovery bound of the local minimum of a general regularization method:

min Lm(β;X) +

n∑
j=1

ρλ(βj), (33)

where Lm : Rn × Rm×n → R is the loss function, and ρλ : R → R is the (possibly nonconvex)
penalty function. In [32], the penalty function ρλ is assumed to satisfy the following assumptions:

(a) ρλ(0) = 0 and is symmetric around zero;
(b) ρλ is nondecreasing on R+;

(c) For t > 0, the function t 7→ ρλ(t)
t is nonincreasing in t;

(d) ρλ is differentiable for each t 6= 0 and subdifferentiable at t = 0, with lim
t→0+

ρ
′

λ(t) = λL;

(e) There exists µ > 0 such that ρλ,µ(t) := ρλ(t) + µ
2 t

2 is convex.
It was established in [32, Theorem 1] the `2 recovery bound of the critical point satisfying the

first-order necessary condition of (33) under the restricted strong convex condition (RSC), which
is a variant of the classical REC.

The `q norm can be reformulated as the penalty function ρλ(βj) := λ|βj |q, however, it does not
satisfy assumptions (d) or (e); in particular, assumption (e) plays a key role in the establishment
of the oracle property and `2 recovery bound of the local minimum. Therefore, the result in [32]
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cannot be directly applied to the `q regularization method, and the oracle property of the general
local minimum of the `q regularization method is still an open question at this moment.

(ii) [30] studied the statistical property of the FCP sparse linear regression and presented the
oracle property and `2 recovery bound of the certain local minimum, which satisfies a subspace
second-order necessary condition and lies in the level set of the FCP regularized function at the
true solution, under the SEC. Although the `q regularizer is beyond the FCP, our established
Theorem 2 provides a theoretical result similar to [30] in the sense that the oracle property and `2
recovery bound are shown for the points within the level set of the `q regularized function at the
true solution.

As an application of Theorem 2 to the case when q = 1, the following corollary presents
statistical properties of the `1 regularization problem under the classical REC, which covers [3,
Theorem 7.2] as a special case when a = 3, θ = 0 and b = 0. The same `2 recovery bound rate
O(σ2s log n/m) was reported in [50] under the sparse Riesz condition, which is comparable with the
classical REC; while the same oracle inequality rate O(σ2s log n/m) was established in [24] under
the compatibility condition, which is slightly weaker than the classical REC but cannot guarantee
the `2 recovery bound.

Corollary 2. Let β̂1,λ be a global solution of (RP1,λ) with

λ = 2σ(1 + θ)

√
2(1 + b) log n

m
.

Suppose that X satisfies the 1-REC(s, t, a) with a > 1 and that (19) is satisfied. Then, with prob-

ability at least 1−
(
nb
√
π log n

)−1
, we have that

1

m
‖Xβ̂1,λ −Xβ∗‖22 ≤

32a2(1 + b)(1 + θ)2

φ21(s, t, a,X)
σ2 log n

m
s,

1

2m
‖Xβ̂1,λ −Xβ∗‖22 + λ‖(β̂1,λ)Jc‖1 ≤

16a2(1 + b)(1 + θ)2

φ21(s, t, a,X)
σ2 log n

m
s,

‖β̂1,λ − β∗‖22 ≤
32a2(1 + b)(1 + θ)2

(
1 + 9 st

)
φ41(s, t, a,X)

σ2 log n

m
s.

4 Recovery bounds for random design

In practical applications, it is more realistic that the design matrix X is random. In this section,
we consider this situation and present the `2 recovery bounds for the `q constrained minimization
problem (CPq,ε) and the `q regularization problem (RPq,λ) by virtue of the results obtained in the
preceding section. In particular, throughout this section, we shall assume that

X is a Gaussian random design with i.i.d. N (0, Σ) rows,

that is, X1·, . . . , Xm· are i.i.d. random vectors with each Xi· ∼ N (0, Σ). Recall that a, θ, and b
are given by (12), and let (s, t) be a pair of integers satisfying (10).

To study the statistical properties of (CPq,ε) and (RPq,λ) with a random design X, we first
provide a sufficient condition for the q-REC of X by virtue of the population covariance matrix
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Σ. For this purpose, we use Σ
1
2 to denote the square root of Σ and ζ(Σ) := max

1≤j≤n
Σjj to denote

the maximal variance. Let a > 1 and assume the pair (s, t) satisfies (10). For δ ∈ Rn and J ⊆
{1, 2, . . . , n}, recall that J(δ; t) refers to the index set corresponding to the first t largest coordinates
in absolute value of δ in Jc. The population covariance matrix Σ ∈ Rn×n is assumed to satisfy the
following condition

Φq(s, t, a,Σ) := min
δ∈Rn:δ 6=0

{
‖Σ1/2δ‖2
‖δJ∪J(δ;t)‖2

: |J | ≤ s, ‖δJc‖qq ≤ a‖δJ‖qq
}
> 0. (34)

Note that this condition is a quasi-REC for the square root of the population covariance matrix
Σ

1
2 with the factor

√
n moved, to make it consistent for the REC of the random design matrix

X. Then two random events related to the linear regression model (1) with X being a Gaussian
random design are

Ca :=

{
φq(s, t, a,X) >

1

2
Φq(s, t, a,Σ)

}
, (35)

and

D :=

{
max
1≤j≤n

‖X·j‖2 ≤ (1 + θ)
√
m

}
. (36)

The following lemma calculates the probabilities of events Ca and D , which is crucial for
establishing the `2 recovery bounds of (CPq,ε) and (RPq,λ) with a random design X. In particular,
part (i) of this lemma shows that the Gaussian random design X satisfies the q-REC with high
probability as long as the sample size m is sufficiently large and the population covariance matrix
Σ satisfies (34); part (ii) of this lemma presents that each column of the Gaussian random design
X has an Euclidean norm scaling as

√
m with overwhelming probability.

Lemma 2. (i) Suppose that Σ satisfies (34). Then, there exist universal positive constants (c1, c2)
(independent of m,n, q, s, t, a,Σ) such that, if

m >
c1ζ(Σ)

Φ2
q(s, t, a,Σ)

(√
s+ t+ a

√
s
(as
t

) 1
q−1
)2

log n, (37)

then
P(Ca) ≥ 1− exp(−c2m). (38)

(ii) Suppose that Σjj = 1 for all j = 1, . . . , n. Then, there exist universal positive constants (c3, c4)
and τ ≥ 1 (independent of m,n, θ,Σ) such that, if

m >
c3τ

4

θ2
log n, (39)

then
P(D) ≥ 1− 2 exp(−c4θ2m/τ4). (40)

Remark 7. As a direct application of Lemma 2(i), the classical REC is satisfied by X with high
probability if Σ satisfies (34) with q = 1 and

m >
c1ζ(Σ)

Φ2
1(s, t, a,Σ)

(√
s+ t+ a

√
s
)2

log n, (41)

which covers [41, Corollary 1] as a special case when t = 0.
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Below, we consider the dominant property in the situation when X is a Gaussian random design.
For the `q constrained minimization problem (CPq,ε), Proposition 3 is still applicable in the case
when X is Gaussian random since it does not rely on the assumption of X, and thus, (22) holds
with the same probability for the random scenario; see Remark 3. In the following proposition, we
show the dominant property (24) for the `q regularization problem (RPq,λ) with a random design
by virtue of Proposition 4. Recall that ε, λ, ρ and the events A and B are given in the preceding
section; see (14)-(17) for details.

Proposition 5. Let β̂q,λ be a global solution of (RPq,λ) with λ given by (15). Suppose that Σjj = 1
for all j = 1, . . . , n. Then, there exist universal positive constants (c1, c2) and τ ≥ 1 (independent
of m,n, q, a, θ, b, ε, r, λ,Σ) such that, if

m >
c1τ

4

θ2
log n, (42)

then (24) holds with probability at least (1−
(
nb
√
π log n

)−1
)(1− 2 exp(−c2θ2m/τ4))− exp(−m).

Now we are ready to present the main theorems of this section, in which we establish the `2
recovery bounds for the `q constrained minimization problem (CPq,ε) and the `q regularization
problem (RPq,λ) when X is a Gaussian random design. The first theorem illustrates the stable
recovery capability of the `q minimization method (CPq,ε) (within a tolerance proportional to the
noise) with high probability with a random design as long as β∗ is sufficiently sparse and the
sample size m is sufficiently large.

Theorem 3. Let β̄q,ε be a global solution of (CPq,ε) with ε given by (14). Suppose that Σ sat-
isfies (34) with a ≥ 1. Then, there exist universal positive constants (c1, c2) (independent of
m,n, q, s, t, ε, Σ) such that, if (37) is satisfied, then it holds with probability at least (1−exp(−m))(1−
exp(−c2m)) that

‖β̄q,ε − β∗‖22 ≤
16
(

1 +
(
s
t

) 2
q−1
)

mΦ2
q(s, t, a,Σ)

ε2. (43)

As a direct application of Theorem 3 to the special case when q = 1, the following corollary
presents the `2 recovery bound of the `1 minimization method (CP1,ε) with a Gaussian random
design as

‖β̄1,ε − β∗‖2 = O(ε)

under the classical REC.

Corollary 3. Let β̄1,ε be a global solution of (CP1,ε) with ε given by (14). Suppose that Σ sat-
isfies (34) with q = 1 and a ≥ 1. Then, there exist universal positive constants (c1, c2) (inde-
pendent of m,n, q, s, t, ε, Σ) such that, if (41) is satisfied, then it holds with probability at least
(1− exp(−m))(1− exp(−c2m)) that

‖β̄1,ε − β∗‖22 ≤
16(1 + s

t )

mΦ2
1(s, t, a,Σ)

ε2.

The other main theorem of this section is as follows, in which we exploit the estimation of
prediction loss, the oracle property and the `2 recovery bound of parameter approximation of the
`q regularization method (RPq,λ) with a Gaussian random design, by virtue of the q-REC of the
square root of its population covariance matrix.
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Theorem 4. Let β̂q,λ be a global solution of (RPq,λ) with λ given by (15). Suppose that Σjj = 1
for all j = 1, . . . , n and Σ satisfies (34) with a > 1. Then, there exist universal positive constants
(c1, c2, c3, c4) and τ ≥ 1 (independent of m,n, q, s, t, a, θ, b, ε, r, λ,Σ) such that, if

m > max

c1(
√
s+ t+ a

1
q
√
s
(
s
t

) 1
q−1)2

Φ2
q(s, t, a,Σ)

log n,
c3τ

4

θ2
log n

 , (44)

then it holds with probability at least(
1− exp(−m)−

(
nb
√
π log n

)−1)
(1− exp(−c2m)− 2 exp(−c4θ2m/τ4))

that

1

m
‖Xβ̂q,λ −Xβ∗‖22 ≤

(
2q+1aλ

Φqq(s, t, a,Σ)

) 2
2−q

s, (45)

1

2m
‖Xβ̂q,λ −Xβ∗‖22 + λ‖(β̂q,λ)Jc‖qq ≤

(
8
q
2 aλ

Φqq(s, t, a,Σ)

) 2
2−q

s, (46)

‖β̂q,λ − β∗‖22 ≤
(

1 + a
2
q

(s
t

) 2
q−1
)(

8aλ

Φ2
q(s, t, a,Σ)

) 2
2−q

s. (47)

As an application of Theorem 4 to the special case when q = 1, the following corollary presents
the statistical properties of the `1 regularization method with a Gaussian random design under the
classical REC. A similar `2 recovery bound was shown in [53, Theorem 3.1] by using a different
analytic technique.

Corollary 4. Let β̂1,λ be a global solution of (RP1,λ) with

λ = 2σ(1 + θ)

√
2(1 + b) log n

m
.

Suppose that Σjj = 1 for all j = 1, . . . , n and Σ satisfies (34) with q = 1 and a > 1. Then, there
exist universal positive constants (c1, c2, c3, c4) and τ ≥ 1 (independent of m,n, s, t, θ, b, Σ) such
that, if

m > max

{
c1(
√
s+ t+ a

√
s)2

Φ2
1(s, t, a,Σ)

log n,
c3τ

4

θ2
log n

}
,

then it holds with probability at least

(1− exp(−m)−
(
nb
√
π log n

)−1
)(1− exp(−c2m)− 2 exp(−c4θ2m/τ4))

that
1

m
‖Xβ̂1,λ −Xβ∗‖22 ≤

128a2(1 + b)(1 + θ)2

Φ2
1(s, t, a,Σ)

σ2 log n

m
s,

1

2m
‖Xβ̂1,λ −Xβ∗‖22 + λ‖(β̂1,λ)Jc‖1 ≤

64a2(1 + b)(1 + θ)2

Φ2
1(s, t, a,Σ)

σ2 log n

m
s,

‖β̂1,λ − β∗‖22 ≤
512a2(1 + b)(1 + θ)2(1 + 9 st )

Φ4
1(s, t, a,Σ)

σ2 log n

m
s.
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5 Numerical experiments

The purpose of this section is to carry out numerical experiments to illustrate the stability of
the `q penalty optimization methods, verify the established theory of the `2 recovery bounds and
compare the numerical performance of the `q regularization methods with another two widely-used
nonconvex regularization methods, namely the SCAD (cf. (7)) and MCP (cf. (7)). In particular, we
are concerned with the cases when q = 0, 1/2, 2/3 and 1. To solve the `q constrained minimization
problems, we will apply the iterative reweighted algorithm [11, 13]. To solve the `q regularization
problems, we will apply the iterative hard thresholding algorithm [4] for q = 0, the proximal
gradient algorithm [27] for q = 1/2 and 2/3, and FISTA [2] for q = 1, respectively. The proximal
gradient algorithm proposed in [32] will be used to solve the SCAD and MCP. All numerical
experiments are performed in MATLAB R2014b and executed on a personal desktop (Intel Core
i7-4790, 3.60 GHz, 8.00 GB of RAM).

The simulated data are generated via a standard process; see, e.g., [1,27]. Specifically, the design
matrix are generated via two different ways – one is for the deterministic case and the other one is
for the random case. For the deterministic vase, we randomly generate an i.i.d. Gaussian ensemble
X ∈ Rm×n. For the random case, we first randomly generated a covariance matrix Σ ∈ Rn×n, and
then generate the design matrix X with i.i.d. N (0, Σ) rows. The sparse vector β∗ ∈ Rn with the
sparsity being equal to s. The observation y is then generated by the MATLAB script

y = X ∗ β∗ + σ ∗ randn(m, 1),

where σ is the noise level, i.e., the standard deviation of Gaussian noise. In the numerical experi-
ments, the dimension of variables and the noise level are set as n = 1024 and σ = 0.01, respectively.

For each sparsity level s/n, we randomly generate the data X, β∗, y 100 times and run the
algorithms mentioned above to solve the `q optimization problems for q = 0, 1/2, 2/3 and 1 as
well as the SCAD and MCP. To simplify the notations, the solution of different problems will
all be denoted as β̂. The parameter ε in the `q constrained minimization problems (CPq,ε) is set

as ε = σ ∗
√
m+ 2

√
2m in order to guarantee that ‖e‖22 is no more than ε2 with overwhelming

probability [9, 11]. In numerical experiments, the regularization parameter λ for each solver is

chosen as the best one among [0.01, 5] in terms of estimate error ‖β̂ − β∗‖2. In order to reveal the
dependence of `2 recovery bounds on the sample size, we report numerical results for a range of
sample sizes of the form m = Ω(s log n), inspired by the established theorems (e.g., (44)).

The following first, second and fifth experiments are carried out with a deterministic design
matrix, while the third and forth experiments are performed with a random design matrix.

The first experiment is conducted to show the performance on parameter estimation of the `q
minimization methods (cf. (25)). Fig. 1 plots the logarithmic estimated error log(‖β̂− β∗‖2) along
with different sample size m. From Fig. 1, we can see that the estimated error of each minimization
method decreases consistently as the sample size increases. In addition, we find that the lower the
q, the better the corresponding minimization method to achieve a more accurate solution.

The second experiment is carried out to show the performance on parameter estimation of the
`q regularization methods (cf. (29)) and compare the performance with the SCAD and MCP. The

corresponding result is displayed in Fig. 2, which plots the logarithmic estimated error log(‖β̂ −
β∗‖2) along with the sample size m. As shown by Fig. 2, the estimated error of each regularization
method decreases consistently as the sample size increases. We also find that the lower-order
regularization method (e.g., when q = 1/2, 2/3) outperforms the `0/`1 regularization method, in
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Fig. 1 Boxplots of the estimated error versus the sample size for different `q minimization methods with a deter-
ministic design.
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Fig. 2 Boxplots of the estimated error versus the sample size for different regularization methods with a determin-
istic design.
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the sense that its estimated error decreases faster as the sample size increases and achieves a more
accurate solution than the `0/`1 regularization method. This is due to the fact that the q-REC
is satisfied when the sample size is larger than a certain level (see Lemma 2(i)) and that the
lower-order regularization method only requires a weaker q-REC to guarantee its nice statistical
property (see Theorems 2 and 4). This result is consistent with existing empirical studies on the `q
regularization methods as in [27, 47]. In addition, it is obvious that the lower-order regularization
methods perform much better than the SCAD and MCP to achieve an accurate solution no matter
whether the sparsity level is high or low. Moreover, we also note in Fig. 2(b) and (d) that there
is a sudden increase of variation when the sample size is 532. This may be due to that when the
sample size is not enough (e.g., 177, 352), all the methods exhibit poor recovery performance.
When the sample size grows to m = 532, the recovery performance becomes better but the success
probability is still not so high (see Theorem 2) because of the relatively limited sample size, thus
leading to a sudden increase of variation.

The third and forth experiments are similar to the first and second experiments, respectively,
with the only difference that the design matrix X is random. Corresponding theoretical conclusions
are equations (43)and (47), respectively. The results are respectively displayed in Fig. 3 and Fig. 4.
The corresponding conclusions are similar to those in the first and second experiments, respectively,
except that the variance of the estimate error in the random case is much smaller than that in
the deterministic case. This phenomenon may be due to the high probability to guarantee the
q-REC in the random case. Moreover, we also note in Fig. 3(c) and Fig. 4 that the lower-order
minimization/regularization methods have larger variation than the `1 minimization/regularization
methods. This may be due to the limited sample size for the exact recovery guarantee (see Theorems
3 and 4), and the variation turns smaller as long as the sample size becomes larger.

The fifth experiment is implemented to study the performance on variable selection of the `q
regularization methods as well as the SCAD and MCP. We use following two criteria to characterize
the capability of variable selection:

sensitivity =
true positive

true positive+false negative
and specificity =

true negative

true negative+false positive
,

which respectively measures the proportion of positives and negatives that are correctly identified.
The larger values of both sensitivity and specificity mean the higher capability of variable selection.
The results are illustrated by averaging over 100 random trials. Tables 1 and 2 respectively chart
the sensitivity and specificity of these methods at a sparsity level 10% corresponding to Fig. 2(b).
It is illustrated that the sensitivity and specificity of all these methods increase as the sample size
grows, except for the specificity of the `1 regularization method, which is resulted from the fact
that there are many small nonzero coefficients estimated by the `1 regularization method. We also
note that the lower-order regularization method (e.g., when q = 1/2, 2/3) outperforms the other
regularization methods in the sense that it can almost completely select the true model when the
size of samples is getting large.

Finally, it is worth mentioning that the existing `q optimization algorithms (see, e.g., [11,13,27,
47]) are only proved to converge to a critical point, while their convergence to a global optimum is
still an open question. Nevertheless, it is demonstrated by the numerical results above, as well as
the ones in the literature, that the limiting point of these algorithms performs well in estimating
the true underlying parameter.
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Fig. 3 Boxplots of the estimated error versus the sample size for different `q minimization methods with a random
design.
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Fig. 4 Boxplots of the estimated error versus the sample size for different regularization methods with a random
design.
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Table 1 Sensitivity of different regularization methods.

Method
Sample size

177 355 532 710 887 976
q=0 0.3029 0.8931 0.9824 0.9873 0.9902 0.9912

q=1/2 0.2902 0.5108 0.9412 0.9873 0.9892 0.9941
q=2/3 0.3108 0.9333 0.9922 0.9931 0.9941 0.9971
q=1 0.5088 0.9980 1.0000 1.0000 1.0000 1.0000

SCAD 0.2882 0.8471 0.9157 0.9363 0.9324 0.9422
MCP 0.1373 0.4539 0.8461 0.9088 0.9353 0.9382

Table 2 Specificity of different regularization methods.

Method
Sample size

177 355 532 710 887 976
q=0 0.9229 0.9882 0.9980 0.9986 0.9989 0.9990

q=1/2 0.8810 0.8119 1.0000 1.0000 1.0000 1.0000
q=2/3 0.8782 0.9999 1.0000 1.0000 1.0000 1.0000
q=1 0.8088 0.7454 0.7680 0.7473 0.7357 0.6120

SCAD 0.9653 0.9900 0.9906 0.9908 0.9919 0.9925
MCP 0.9466 0.9757 0.9909 0.9919 0.9925 0.9925

Appendix

A Preliminary lemmas

We first recall some basic properties of the `q norm in the following lemmas; particularly, the first inequality in
(A.1) is from [27, Eq. (7)] and the second inequality in (A.1) is from [26, Eq. (104)] and (A.2) is from [27, Lemma
2] by taking p = 1 and a simple variable substitution.

Lemma A.1. Let α, β ∈ Rn. Then the following relations are true:

‖β‖q2 ≤ ‖β‖q1 ≤ n
1
q1
− 1
q2 ‖β‖q2 for any 0 < q1 ≤ q2 < +∞, (A.1)

‖α‖qq − ‖β‖qq ≤ ‖α+ β‖qq ≤ ‖α‖qq + ‖β‖qq for any 0 < q ≤ 1. (A.2)

Lemma A.2. Let p ≥ 1, n1, n2 ∈ N, α ∈ Rn1
+ , β ∈ Rn2

+ and c > 0 be such that

max
1≤i≤n1

αi ≤ min
1≤j≤n2

βj and

n1∑
i=1

αi ≤ c
n2∑
j=1

βj . (A.3)

Then
n1∑
i=1

αpi ≤ c
n2∑
j=1

βpj . (A.4)

Proof. Let αmax := max
1≤i≤n1

αi and βmin := min
1≤j≤n2

βj . Then it holds that

αmax

n1∑
i=1

αpi ≤ α
p
max

n1∑
i=1

αi and βpmin

n2∑
j=1

βj ≤ βmin

n2∑
j=1

βpj . (A.5)

Without loss of generality, we assume that αmax > 0; otherwise, (A.4) holds automatically. Thus, by the first
inequality of (A.3) and noting p ≥ 1, we have that

0 < αpmaxβmin ≤ αmaxβ
p
min. (A.6)
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Multiplying the inequalities in (A.5) by βmin

n2∑
j=1

βj and αmax

n1∑
i=1

αi respectively, we obtain that

αmaxβmin

n1∑
i=1

αpi

n2∑
j=1

βj ≤ αpmaxβmin

n1∑
i=1

αi

n2∑
j=1

βj

≤ αmaxβ
p
min

n1∑
i=1

αi

n2∑
j=1

βj

≤ αmaxβmin

n1∑
i=1

αi

n2∑
j=1

βpj ,

where the second inequality follows from (A.6). This, together with the second inequality of (A.3), yields (A.4). The
proof is complete.

The following lemmas are useful for establishing the relationship between the q-REC and other types of regularity
conditions; in particular, Lemmas A.3 and A.4 are taken from [10, Lemma 1.1] and [24, Lemma 3.1], respectively.

Lemma A.3. Let X ∈ Rm×n and s, t ∈ N be such that s+ t ≤ n. Then

θs,t(X) ≤ ηs+t(X) ≤ θs,t(X) + max{ηs(X), ηt(X)}.

Lemma A.4. Let α, β ∈ Rn and 0 < τ < 1 be such that −〈α, β〉 ≤ τ‖α‖22. Then (1− τ)‖α‖2 ≤ ‖α+ β‖2.

For the sake of simplicity, a partition structure and some notations are presented. For a vector δ ∈ Rn and an
index set J ⊆ {1, 2, . . . , n}, we use rank(δi; J

c) to denote the rank of the absolute value of δi in Jc (in a decreasing
order) and Jk(δ; t) to denote the index set of the k-th batch of the first t largest coordinates in absolute value of δ
in Jc. That is,

Jk(δ; t) := {i ∈ Jc : rank(δi; J
c) ∈ {kt+ 1, . . . , (k + 1)t}} for each k ∈ N. (A.7)

Furthermore, we let r := dn−s
t
e (where due denotes the largest integer not greater than u), Jk := Jk(δ; t) (defined

by (A.7)) for each k ∈ N and J∗ := J ∪J0. With these notations, the Lemma A.5 is taken from [27, Lemma 7] when
the group structure is degenerated.

Lemma A.5. Let δ ∈ Rn, 0 < q ≤ 1 and τ ≥ 1. Then the following inequalities hold

‖δJc∗‖τ ≤
r∑
k=1

‖δJk‖τ ≤ t
1
τ
− 1
q ‖δJc‖q .

Lemma A.6. Let X ∈ Rm×n, 0 < q ≤ 1, a > 0, and (s, t) be a pair of integers satisfying (10). Then the following
relations are true:

φq(s, t, a,X) ≥
1
√
m

(√
σmin(s+ t,X)− a

1
q

( s
t

) 1
q
− 1

2
√
σmax(t,X)

)
, (A.8)

φq(s, t, a,X) ≤
1
√
m

(√
σmax(s+ t,X) + a

1
q

( s
t

) 1
q
− 1

2
√
σmax(t,X)

)
. (A.9)

Proof. Fix δ ∈ Cq(s, a), as defined by (B.1). Then there exists J ⊆ {1, 2, . . . , n} such that

|J | ≤ s and ‖δJc‖qq ≤ a‖δJ‖qq . (A.10)

Write r := dn−s
t
e, Jk := Jk(δ; t) (defined by (A.7)) for each k ∈ N and J∗ := J ∪ J0. Then it follows from Lemma

A.5 and (A.10) that

r∑
k=1

‖δJk‖2 ≤ t
1
2
− 1
q ‖δJc‖q ≤ a

1
q t

1
2
− 1
q ‖δJ‖q ≤ a

1
q

( s
t

) 1
q
− 1

2 ‖δJ‖2 (A.11)
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(due to (A.1)). Noting by (A.7) and (A.10) that |J∗| ≤ s+ t and |Jk| ≤ t for each k ∈ N, one has by (4) that√
σmin(s+ t,X)‖δJ∗‖2 ≤ ‖XδJ∗‖2 ≤

√
σmax(s+ t,X)‖δJ∗‖2,

‖XδJk‖2 ≤
√
σmax(t,X)‖δJk‖2 for each k ∈ N.

These, together with (A.11), imply that

‖Xδ‖2 ≥ ‖XδJ∗‖2 −
r∑
k=1

‖XδJk‖2

≥
(√

σmin(s+ t,X)− a
1
q

( s
t

) 1
q
− 1

2
√
σmax(t,X)

)
‖δJ∗‖2.

Since δ and J satisfying (A.10) are arbitrary, (A.8) is shown to hold by (11) and the fact that J∗ = J ∪ J(δ; t). One
can prove (A.9) in a similar way, and thus, the details are omitted.

The next two lemmas provide some preliminary lemmas to measure the probabilities of random events related
to the linear regression model (1), in which Lemma A.7 is taken from [53, Lemma C.1].

Lemma A.7. Let 0 ≤ θ < 1 and b ≥ 0. Suppose that

max
1≤j≤n

‖X·j‖2 ≤ (1 + θ)
√
m. (A.12)

Then

P

(
‖X>e‖∞

m
≥ σ(1 + θ)

√
2(1 + b) logn

m

)
≤
(
nb
√
π logn

)−1
.

Lemma A.8. Let d ≥ 5. Then

P
(
‖e‖22 ≥ dmσ2

)
≤ exp

(
−
d− 1

4
m

)
.

Proof. Recall that e = (e1, . . . , em)> ∼ N (0, σ2Im). Let ui := 1
σ
ei for i = 1, . . . ,m. Then one has that u1, . . . , um

are i.i.d. Gaussian variables with ui ∼ N (0, 1) for i = 1, . . . ,m. Let u := (u1, . . . , um)>. Clearly, ‖u‖22 = 1
σ2 ‖e‖22 is

a chi-square random variable with m degrees of freedom (see, e.g., [44, Section 5.6]). Then it follows from standard
tail bounds of chi-square random variable (see, e.g., [42, Appendix I]) that

P
(
‖u‖22 −m

m
≥ d− 1

)
≤ exp

(
−
d− 1

4
m

)
(as d ≥ 5). Consequently, we obtain that

P
(
‖e‖22 ≥ dmσ2

)
= P

(
‖u‖22 ≥ dm

)
≤ exp

(
−
d− 1

4
m

)
.

The proof is complete.

Recall that β∗ satisfies the linear regression model (1). The following lemma is beneficial in proving Theorem 2.

Lemma A.9. Let β̂q,λ be an optimal solution of (RPq,λ). Then

1

2m
‖Xβ∗ −Xβ̂q,λ‖22 ≤ λ‖β∗‖qq − λ‖β̂q,λ‖qq +

1

m
‖β̂q,λ − β∗‖1‖X>e‖∞.
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Proof. Since β̂q,λ is an optimal solution of (RPq,λ), it follows that

1

2m
‖y −Xβ̂q,λ‖22 + λ‖β̂q,λ‖qq ≤

1

2m
‖y −Xβ∗‖22 + λ‖β∗‖qq .

This, together with (1), yields that

λ‖β̂q,λ‖qq − λ‖β∗‖qq ≤
1

2m
‖y −Xβ∗‖22 −

1

2m
‖y −Xβ̂q,λ‖22

=
1

m

〈
X(β̂q,λ − β∗), e

〉
−

1

2m
‖Xβ∗ −Xβ̂q,λ‖22

≤
1

m
‖β̂q,λ − β∗‖1‖X>e‖∞ −

1

2m
‖Xβ∗ −Xβ̂q,λ‖22.

The proof is complete.

Assume X1·, . . . , Xm· are i.i.d. random vectors with each Xi· ∼ N (0, Σ). Then the following lemma is taken
from [1, Supplementary, Lemma 6], which is useful for providing a sufficient condition for the q-REC of the random
design X.

Lemma A.10. There exist universal positive constants (c1, c2) (independent of m,n,Σ) such that it holds with
probability at least 1− exp(−c2m) that, for each δ ∈ Rn

‖Xδ‖22
m

≥
1

2
‖Σ

1
2 δ‖22 − c1ζ(Σ)

logn

m
‖δ‖21. (A.13)

B Technical proofs

Proof of Proposition 1. Associated with the q-REC(s, t, a), we define the feasible set

Cq(s, a) := {δ ∈ Rn : ‖δJc‖qq ≤ a‖δJ‖qq for some |J | ≤ s}. (B.1)

By Definition 5, it remains to show that Cq1 (s, a) ⊆ Cq2 (s, a). To this end, let δ ∈ Cq1 (s, a), and let J0 denote
the index set of the first s largest coordinates in absolute value of δ. By the assumption that δ ∈ Cq1 (s, a) and
by the construction of J0, one has ‖δJc0 ‖

q1
q1 ≤ a‖δJ0‖

q1
q1 . Then we obtain by Lemma A.2 (with q2/q1 in place of p)

that ‖δJc0 ‖
q2
q2 ≤ a‖δJ0‖

q2
q2 ; consequently, δ ∈ Cq2 (s, a). Hence, it follows that Cq1 (s, a) ⊆ Cq2 (s, a), and the proof is

complete.

Proof of Proposition 2. It directly follows from Lemma A.6 (cf. (A.8)) that X satisfies the q-REC(s, t, a) provided
that condition (a) holds. Fix δ ∈ Cq(s, a), and let J , r, Jk (for each k ∈ N) and J∗ be defined, respectively, as in the
beginning of the proof of Lemma A.6. Then (A.11) follows directly and it follows from Lemma A.5 and (17) that

‖δJc∗‖1 =

r∑
k=1

‖δJk‖1 ≤ t
1− 1

q ‖δJc‖q ≤ a
1
q t

1− 1
q ‖δJ‖q ≤ a

1
q

( s
t

) 1
q
−1
‖δJ‖1. (B.2)

Suppose that condition (b) is satisfied. By Definition 2 (cf. (3)), one has that

|〈XδJ∗ , XδJc∗ 〉| ≤
r∑
k=1

|〈XδJ∗ , XδJk 〉| ≤ θt,s+t(X)‖δJ∗‖2
r∑
k=1

‖δJk‖2.

Then it follows from (A.11) that

|〈XδJ∗ , XδJc∗ 〉| ≤ a
1
q

( s
t

) 1
q
− 1

2
θt,s+t(X)‖δJ∗‖2‖δJ‖2

≤
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− ηs+t(X)
‖XδJ∗‖

2
2 (B.3)
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(by (2)). Since s ≤ t (by (10)), one has by Definition 1(i) that ηs(X) ≤ ηt(X), and then by Lemma A.3 that
ηs+t(X) ≤ θs,t(X) + ηt(X). Then it follows from (b) that

0 <
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− ηs+t(X)
≤
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− (ηt(X) + θs,t(X))
< 1. (B.4)

This, together with (B.3), shows that Lemma A.4 is applicable (with XδJ∗ , XδJc∗ ,
a

1
q ( st )

1
q
− 1

2 θt,s+t(X)

1−ηs+t(X)
in place of

α, β, τ) to concluding that

‖Xδ‖22 ≥

1−
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− ηs+t(X)

2

‖XδJ∗‖
2
2

≥ (1− ηs+t(X))

1−
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− ηs+t(X)

2

‖δJ∗‖
2
2

(due to (2)). Since δ and J satisfying (A.10) are arbitrary, we derive by (11) and (B.4) that

φq(s, t, a,X) ≥
1
√
m

√1− ηs+t(X)

1−
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− ηs+t(X)

 > 0;

consequently, X satisfies the q-REC(s, t, a).
Suppose that (c) is satisfied. Then we have by (B.2) and Definition 2 (cf. (3)) that

‖Xδ‖22 = ‖XδJ∗‖
2
2 + 2〈XδJ∗ , XδJc∗ 〉+ ‖XδJc∗‖

2
2

≥ ‖XδJ∗‖
2
2 − 2|〈XδJ∗ , XδJc∗ 〉|

≥ ‖XδJ∗‖
2
2 − 2θ1,1(X)‖δJ∗‖1‖δJc∗‖1

≥ ‖XδJ∗‖
2
2 − 2a

1
q

( s
t

) 1
q
−1

θ1,1(X)‖δJ∗‖
2
1.

(B.5)

Separating the diagonal and off-diagonal terms of the quadratic form δTJ∗X
TXδJ∗ , one has by (A.1) and (c) that

‖XδJ∗‖
2
2 =

n∑
i=1

(XTX)i,i(δJ∗ )i(δJ∗ )i +
n∑
j 6=k

(XTX)j,k(δJ∗ )j(δJ∗ )k

= ‖δJ∗‖
2
2 +

n∑
j 6=k
〈X·j(δJ∗ )j , X·k(δJ∗ )k〉

≥ ‖δJ∗‖
2
2 − θ1,1(X)‖δJ∗‖

2
1

≥ (1− (s+ t)θ1,1(X))‖δJ∗‖
2
2.

Combining this inequality with (B.5), we get that

‖Xδ‖22 ≥
(

1−
(

1 + 2a
1
q

( s
t

) 1
q
−1
)

(s+ t)θ1,1(X)

)
‖δJ∗‖

2
2.

Since δ and J satisfying (A.10) are arbitrary, we derive by (11) and (c) that

φq(s, t, a,X) ≥
1
√
m

(
1−

(
1 + 2a

1
q

( s
t

) 1
q
−1
)

(s+ t)θ1,1(X)

)
> 0;

consequently, X satisfies the q-REC(s, t, a). The proof is complete.
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Proof of Lemma 1. By (14) and (16), Lemma A.8 is applicable (with d = 5) to showing that P(A c) ≤ exp(−m),
that is, (18) is proved. Then it remains to show (20) and (21). For this purpose, we have by (15) that λ ≥ 5

2
σ2, and

noting that 0 < q ≤ 1,

λ ≥
a+ 1

a− 1
σ(1 + θ)21−q

(
5σ2

2λ
+ rq

) 1−q
q
√

2(1 + b) logn

m

=
a+ 1

a− 1
σ(1 + θ)(2ρ)1−q

√
2(1 + b) logn

m

(due to (14)). Then one has by (17) that

P(Bc) ≤ P

(
a+ 1

(a− 1)m
(2ρ)1−q‖X>e‖∞ ≥

a+ 1

a− 1
σ(1 + θ)(2ρ)1−q

√
2(1 + b) logn

m

)

= P

(
‖X>e‖∞

m
≥ σ(1 + θ)

√
2(1 + b) logn

m

)
.

Hence, by assumption (A.12), Lemma A.7 is applicable to ensuring (20). Moreover, it follows from the elementary
probability theory that

P(A ∩B) ≥ P(A )− P(Bc) ≥ 1− exp(−m)−
(
nb
√
π logn

)−1
.

The proof is complete.

Proof of Proposition 3. Let e ∈ A . Recall that β∗ satisfies the linear regression model (1), one has that ‖y−Xβ∗‖2 =
‖e‖2 ≤ ε (under the event A ), and so, β∗ is a feasible vector of (CPq,ε). Consequently, by the optimality of β̄q,ε for
(CPq,ε), it follows that ‖β̄q,ε‖q ≤ ‖β∗‖q . Write δ := β̄q,ε − β∗. Then we obtain that

‖β∗‖qq ≥ ‖β∗ + δ‖qq = ‖β∗ + δJ + δJc‖qq = ‖β∗ + δJ‖qq + ‖δJc‖qq , (B.6)

where the last equality holds because β∗Jc = 0. On the other hand, one has by (A.2) that ‖β∗+δJ‖qq ≥ ‖β∗‖qq−‖δJ‖qq .
This, together with (B.6), implies (22). The proof is complete.

Proof of Proposition 4. Let e ∈ A . Since β̂q,λ is an optimal solution of (RPq,λ), one has that

1

2m
‖y −Xβ̂q,λ‖22 + λ‖β̂q,λ‖qq ≤

1

2m
‖y −Xβ∗‖22 + λ‖β∗‖qq .

Then, by (1) and (13), it follows that

‖β̂q,λ‖qq ≤
1

2mλ
‖y −Xβ∗‖22 + ‖β∗‖qq ≤

1

2mλ
‖e‖22 + rq ≤ ρq

(due to (14) and (16)). Write δ := β̂q,λ − β∗. Then, we obtain by (A.1) and (13) that

‖δ‖1 ≤ ‖β̂q,λ‖1 + ‖β∗‖1 ≤ ‖β̂q,λ‖q + ‖β∗‖q ≤ ρ+ r < 2ρ.

Consequently, noting that 0 < q ≤ 1, one sees that
‖δ‖1
2ρ
≤
(
‖δ‖1
2ρ

)q
, and then, by (A.1) that

‖δ‖1 ≤ (2ρ)1−q‖δ‖q1 ≤ (2ρ)1−q‖δ‖qq . (B.7)

This shows that (23) is proved. Then it remains to claim (24). To this end, noting that β∗Jc = 0, we derive by Lemma
A.9 that

−
1

m
‖δ‖1‖X>e‖∞ ≤ λ‖β∗‖qq − λ‖β∗ + δ‖qq

= λ‖β∗J‖
q
q − λ‖β∗J + δJ‖qq − λ‖δJc‖qq

≤ λ
(
‖δJ‖qq − ‖δJc‖qq

)
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(by (A.2)). This, together with (B.7), yields that

λ
(
‖δJ‖qq − ‖δJc‖qq

)
≥ −

1

m
(2ρ)1−q‖δ‖qq‖X>e‖∞.

Then, under the event A ∩B, we obtain by (17) that

(a+ 1)
(
‖δJ‖qq − ‖δJc‖qq

)
≥ −(a− 1)‖δ‖qq = −(a− 1)(‖δJ‖qq + ‖δJc‖qq),

which yields (24). The proof is complete.

Proof of Theorem 1. Write δ := β̄q,ε − β∗, and let J∗ := J ∪ J0(δ; t) (defined by (A.7)). Fix e ∈ A . Then it follows
from Lemma A.5 and Proposition 3 that

‖δJc∗‖
2
2 ≤ t

1− 2
q ‖δJc‖2q ≤ t

1− 2
q ‖δJ‖2q ≤

( s
t

) 2
q
−1
‖δJ‖22 ≤

( s
t

) 2
q
−1
‖δJ∗‖

2
2

(by (A.1)), and so

‖δ‖22 = ‖δJ∗‖
2
2 + ‖δJc∗‖

2
2 ≤

(
1 +

( s
t

) 2
q
−1
)
‖δJ∗‖

2
2. (B.8)

Recalling that β∗ satisfies the linear regression model (1), we have that ‖y−Xβ∗‖2 = ‖e‖2 ≤ ε (by (16)), and then

‖Xδ‖2 = ‖Xβ̄q,ε −Xβ∗‖2 ≤ ‖Xβ̄q,ε − y‖2 + ‖Xβ∗ − y‖2 ≤ 2ε. (B.9)

On the other hand, Proposition 3 is applicable to concluding that (22) holds, which shows δ ∈ Cq(s, 1) ⊆ Cq(s, a)
due to a ≥ 1 (cf. (B.1)). Consequently, we obtain by the assumption of the q-REC(s, t, a) that

‖δJ∗‖2 ≤
‖Xδ‖2√

mφq(s, t, a,X)
.

This, together with (B.8) and (B.9), implies that (25) holds under the event A . Noting from Lemma 1 that P(A ) ≥
1− exp(−m), we obtain the conclusion. The proof is complete.

Proof of Theorem 2. Write δ := β̂q,λ − β∗ and fix e ∈ A ∩B. Note by (23) and (17) that

1

m
‖δ‖1‖X>e‖∞ ≤

a− 1

a+ 1
λ‖δ‖qq .

This, together with Lemma A.9, implies that

1

2m
‖Xβ̂q,λ −Xβ∗‖22 ≤ λ‖β∗‖qq − λ‖β̂q,λ‖qq +

a− 1

a+ 1
λ‖δ‖qq

≤ λ‖δJ‖qq − λ‖(β̂q,λ)Jc‖qq +
a− 1

a+ 1
λ‖δ‖qq

(B.10)

(noting that β∗Jc = 0 and by (A.2)). Let J∗ := J ∪ J0(δ; t). One has by (24) and (A.1) that

λ‖δJ‖qq +
a− 1

a+ 1
λ‖δ‖qq ≤ aλ‖δJ‖qq ≤ aλs1−

q
2 ‖δJ‖q2,

and by the assumption of the q-REC(s, t, a) that

‖δJ‖2 ≤ ‖δJ∗‖2 ≤
‖Xδ‖2√

mφq(s, t, a,X)
.

These two inequalities, together with (B.10), imply that

1

2m
‖Xβ̂q,λ −Xβ∗‖22 + λ‖(β̂q,λ)Jc‖qq ≤

aλs1−
q
2

m
q
2 φqq(s, t, a,X)

‖Xβ̂q,λ −Xβ∗‖q2.
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This yields that
(27) and (28) hold under the event A ∩B. (B.11)

Furthermore, it follows from Lemma A.5 that

‖δJc∗‖
2
2 ≤ t

1− 2
q ‖δJc‖2q ≤ a

2
q t

1− 2
q ‖δJ‖2q ≤ a

2
q

( s
t

) 2
q
−1
‖δJ‖22.

(by (24) and (A.1)). By the assumption of the q-REC(s, t, a), one has by (27) that

‖δJ∗‖
2
2 ≤

‖Xδ‖22
mφ2q(s, t, a,X)

≤
(

2aλ

(φ2q(s, t, a,X)

) 2
2−q

s.

Hence we obtain that

‖β̂q,λ − β∗‖22 = ‖δJ∗‖
2
2 + ‖δJc∗‖

2
2 ≤

(
1 + a

2
q

( s
t

) 2
q
−1
)
‖δJ∗‖

2
2

≤
(

1 + a
2
q

( s
t

) 2
q
−1
)(

2aλ

(φ2q(s, t, a,X))

) 2
2−q

s.

This shows that
(29) holds under the event A ∩B. (B.12)

By assumption (A.12), Lemma 1 is applicable to concluding that

P(A ∩B) ≥ 1− exp(−m)−
(
nb
√
π logn

)−1
.

This, together with (B.11) and (B.12), yields that (27)-(29) hold with probability at least 1−exp(−m)−
(
nb
√
π logn

)−1
.

The proof is complete.

Proof of Lemma 2. (i) We first claim that

φq(s, t, a,X) >
1

2
Φq(s, t, a,Σ), (B.13)

whenever (A.13) holds for each δ ∈ Rn. To this end, we suppose that (A.13) is satisfied for each δ ∈ Rn. Fix
δ ∈ Cq(s, a), and let J , r, Jk (for each k ∈ N) and J∗ be defined, respectively, as in the beginning of the proof of
Lemma A.6. Then (B.2) follows directly, and one has that

‖δ‖1 = ‖δJ∗‖1 + ‖δJc∗‖1

≤
√
s+ t‖δJ∗‖2 + a

√
s
(as
t

) 1
q
−1
‖δJ‖2

≤
(√

s+ t+ a
√
s
(as
t

) 1
q
−1
)
‖δJ∗‖2.

(B.14)

By the assumption that Σ satisfies (34), it follows that

‖Σ
1
2 δ‖22 ≥ Φ2

q(s, t, a,Σ)‖δJ∗‖
2
2.

Substituting this inequality and (B.14) into (A.13) yields

‖Xδ‖22
m

≥
(

1

2
Φ2
q(s, t, a,Σ)− c1ζ(Σ)

(√
s+ t+ a

√
s
(as
t

) 1
q
−1
)2

logn

m

)
‖δJ∗‖

2
2.

This, together with (37), shows that

‖Xδ‖22
m

≥
1

4
Φ2
q(s, t, a,Σ)‖δJ∗‖

2
2.
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Since δ and J satisfying (A.10) are arbitrary, we derive by (11) that (B.13) holds, as desired. Then, Lemma A.10 is
applicable to concluding (38).
(ii) Noting by the assumption that Σjj = 1 for all j = 1, . . . , n, [53, Theorem 1.6] is applicable to showing that
there exist universal positive constants (c1, c2) and τ ≥ 1 such that

P
(
∩nj=1

{
(1− θ)

√
m ≤ ‖X·j‖2 ≤ (1 + θ)

√
m
})
≥ 1− 2 exp(−c2θ2m/τ4),

whenever m satisfies (39). Then it immediately follows from (36) that

P(D) = P(∩nj=1{‖X·j‖2 ≤ (1 + θ)
√
m})

≥ 1− 2 exp(−c2θ2m/τ4),

that is, (40) is proved.

Proof of Proposition 5. By (36), one sees by Proposition 4 that (24) holds under the event A ∩ B ∩ D . Then it
remains to estimate P(A ∩B ∩D). By Lemma 2(ii), there exist universal positive constants (c1, c2) and τ ≥ 1 such
that

P(D) ≥ 1− 2 exp(−c2θ2m/τ4),

whenever m satisfies (42). From Lemma 1 (cf. (20)), we have also by (36) that

P(B|D) ≥ 1− (nb
√
π logn)−1.

Then, it follows that
P(B ∩ D) = P(B|D)P(D)

≥ (1− (nb
√
π logn)−1)(1− 2 exp(−c2θ2m/τ4)),

and then by the elementary probability theory and (18) that,

P(A ∩B ∩ D) = P(B ∩ D)− P(B ∩ D ∩A c)

≥ P(B ∩ D) + P(A )− 1

≥
(

1−
(
nb
√
π logn

)−1
)

(1− 2 exp(−c2θ2m/τ4))− exp(−m),

whenever m satisfies (42). The proof is complete.

Proof of Theorem 3. To simplify the proof, corresponding to inequalities (25) and (43), we define the following two
events

E1 :=

‖β̄q,ε − β∗‖22 ≤ 4(1 +
(
s
t

) 2
q
−1

)

φ2q(s, t, a,X)
ε2

 ,

E2 :=

‖β̄q,ε − β∗‖22 ≤ 16(1 +
(
s
t

) 2
q
−1

)

mΦ2
q(s, t, a,Σ)

ε2

 .

Then, by the definition of C1 (35), we have that C1 ∩ E1 ⊆ E2 and thus

P(E2) ≥ P(E1 ∩ C1) = P(E1|C1)P(C1). (B.15)

Note by Theorem 1 that
P(E1|C1) ≥ 1− exp(−m). (B.16)

By Lemma 2(i) (with a = 1), there exist universal positive constants (c1, c2) such that (37) ensures (38). Then we
obtain by (B.15) and (B.16) that

P(E2) ≥ (1− exp(−m))(1− exp(−c2m)),

whenever m satisfies (37). The proof is complete.
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Proof of Theorem 4. To simplify the proof, we define the following six events

F1 = {(27) happens} , F2 = {(28) happens} , F3 = {(29) happens} ,
G1 = {(45) happens} , G2 = {(46) happens} , G3 = {(47) happens} .

Fix i ∈ {1, 2, 3}. Then, we have by (35) that Ca ∩Fi ⊆ Gi and thus

P(Gi) ≥ P(Ca ∩Fi). (B.17)

By Lemma 2, there exist universal positive constants (c1, c2, c3, c4) and τ ≥ 1 such that, (44) ensures (38) and (40).
Then it follows from (38) and (40) that

P(Ca ∩ D) ≥ P(Ca) + P (D)− 1 ≥ 1− exp(−c2m)− 2 exp(−c4θ2m/τ4), (B.18)

whenever m satisfies (44). Recall from Theorem 2 that

P(Fi|Ca ∩ D) ≥ 1− exp(−m)−
(
nb
√
π logn

)−1
.

This, together with (B.18), implies that

P(Ca ∩Fi) ≥ P(Fi|Ca ∩ D)P(Ca ∩ D)

≥
(

1− exp(−m)−
(
nb
√
π logn

)−1
)

(1− exp(−c2m)− 2 exp(−c4θ2m/τ4)).

Then, one has by (B.17) that

P(Gi) ≥
(

1− exp(−m)−
(
nb
√
π logn

)−1
)

(1− exp(−c2m)− 2 exp(−c4θ2m/τ4)),

whenever m satisfies (44). The proof is complete.

C Example to illustrate the recovery bound

The following example shows the performance of the `1/2 regularization method and the `1 regularization
method in the case where 1/2-REC(1, 1, 1) is satisfied but not the classical REC(1, 1, 1).

Example C.1. Consider the linear regression model (1), where

X :=

(
2 3 1
2 1 3

)
, β∗ := (1, 0, 0)>, e ∼ N (0, 0.01).

It was validated in [27, Example 1] that the matrix X satisfies 1/2-REC(1, 1, 1) but not the classical REC(1, 1, 1);
hence the recovery bound of the `1/2 regularization method is satisfied but may not for the `1 regularization method.

To show the performance of the `1/2 regularization method and the `1 regularization method in this case, for each

regularization parameter λ varying from 10−8 to 1, we randomly generate the Gaussian noise 500 times and calculate
the estimated errors ‖β̂q,λ−β∗‖22 for the `1/2 regularization method and the `1 regularization method, respectively.
We employ FISTA [2] and the filled function method [22] to find the global solution of the `1 regularization problem
and the `1/2 regularization problem, respectively. The results are illustrated in Fig. C.1, in which the error bars
represent the 95% confidence intervals and the curves of recovery bounds stand for the terms in the right-hand side
of (29) (cf. [27, Example 2]) and (30), respectively. It is observed from Fig. C.1(a) that the recovery bound (29) is
satisfied with high probability for most of λ’s and tight when λ ≈ 1

2
for the `1/2 regularization method. Fig. C.1(b)

shows that the estimated error (30) for the `1 regularization method is not satisfied when λ is small because the
classical REC violates. Moreover, the solutions of the `1 regularization problem are always equal-contributed among
3 components that leads to the failure approach to a sparse solution.

The next example is to illustrate the influence of the parameter a as in the REC on estimated errors obtained
by the `1 regularization method.
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(b) The `1 regularization method.

Fig. C.1 The illustration of recovery bounds and estimated errors.

Example C.2. Consider the linear regression model (1), where

X :=

(
1 1 −a
1 2 −(a+ 1)

)
, β∗ := (0, 0, 1)>, e ∼ N (0, 0.01). (C.1)

Due to the geometric interpretation of the REC, one sees that the REC(1, 1, a) holds if and only if the null space of
X does not intersect the feasible set C1(1, a) (B.1); one can also refer to [27, Figure 1]. Hence one can check by the
construction of X that it satisfies the REC(1, 1, c) for each c < min{a, 2} and fails otherwise. That is, if X is given
by (C.1) with a larger parameter a ∈ [1, 2], then X satisfies a stronger REC(1, 1, a).

To show the influence of the parameter a on the estimated error, we select a := 1, 1.5, 2, 2.5 as an instance to
construct the matrix X by (C.1). Then for each regularization parameter λ varying from 10−8 to 1, we randomly

generate the Gaussian noise 500 times and calculate the estimated errors ‖β̂1,λ − β∗‖22 using FISTA [2] to find the
global solution of the `1 regularization problem. The averaged result is displayed in Fig. C.2. One can see that (i)
the recovery bound in (29) is satisfied when a > 1 but fails when a = 1 that is consistent with Theorem 2; and (ii)
as parameter a becomes larger, the estimated error becomes smaller that shows a better result than Theorem 2.
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Fig. C.2 The illustration of influence of parameter a as in the REC on estimated errors.
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