
Noname manuscript No.
(will be inserted by the editor)

Linearized Proximal Algorithms with Adaptive Stepsizes for

Convex Composite Optimization with Applications

Yaohua Hu · Chong Li · Jinhua Wang · Xiaoqi

Yang · Linglingzhi Zhu

Received: date / Accepted: date

Abstract We propose an inexact linearized proximal algorithm with an adaptive stepsize,

together with its globalized version based on the backtracking line-search, to solve a convex

composite optimization problem. Under the assumptions of local weak sharp minima of order

p (p ≥ 1) for the outer convex function and a quasi-regularity condition for the inclusion

problem associated to the inner function, we establish superlinear/quadratic convergence

results for proposed algorithms. Compared to the linearized proximal algorithms with a

constant stepsize proposed in [19], our algorithms own broader applications and higher

convergence rates, and the idea of analysis used in the present paper deviates significantly

from that of [19]. Numerical applications to the nonnegative inverse eigenvalue problem and

the wireless sensor network localization problem indicate that the proposed algorithms are

more efficient and robust, and outperform the algorithms in [19] and some popular algorithms

for relevant problems.
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1 Introduction

In the present paper, we consider the following convex composite optimization problem

min
x∈Rn

f(x) := (h ◦ F )(x), (1.1)

where the inner function F : Rn → Rm is continuously differentiable, and the outer function

h : Rm → R is convex. The minimal value and the set of minima of h are denoted by

hmin := min
y∈Rm

h(y) and C := {y ∈ Rm : h(y) = hmin}, (1.2)

respectively. Problem (1.1) is a typical class of structured (nonconvex) optimization problem-

s, which provides a unified framework for not only a wide variety of important optimization

problems including convex inclusions, penalty methods for nonlinear programming and reg-

ularized minimization problems (see, e.g., [7,16,22,32,36]), but also the development and

analysis of optimization algorithms (see, e.g., [8,11,16,19,32]).

By virtue of the composite structure, many exclusive and efficient methods have been

developed to solve the convex composite optimization problem (1.1). One of the most impor-

tant methods is the famous Gauss-Newton method (GNM); see [10,23,24,37] and references

therein. To establish convergence results of the GNM, the following two assumptions are

considered:

(A0) C is the set of weak sharp minima for h.

(B0) A regularity condition of the inclusion F (x) ∈ C holds.

In their seminal paper [10], Burke and Ferris, under assumptions (A0) and (B0), estab-

lished a semi-local quadratic convergence result (by providing a convergence criterion based

on the data around the initial point) for the GNM. Furthermore, a globalized version of the

GNM based on a backtracking line-search was proposed there and its global quadratic con-

vergence result was also established under the same assumptions. Li and Wang [24] improved

the corresponding semi-local convergence result for the GNM and the corresponding global

convergence one for the globalized version of the GNM, respectively, by removing assumption

(A0) and by relaxing assumption (A0) to the assumption that limd(y,C)→0
h(y)−hmin

d2(y,C) = +∞,

a weaker one than assumption (A) below with 1 ≤ p < 2. This semi-local convergence result

for the GNM was further improved in [23] by virtue of a majorizing function technique, under

the following assumption (B); this issue was also re-studied in [15] by a similar majorizing

function technique.

(A) C is the set of weak sharp minima for h of order p (p ≥ 1).
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(B) A quasi-regularity condition for the inclusion F (x) ∈ C holds.

Clearly, (A) and (B) are weaker than (A0) and (B0), respectively.

However, as explained in [19], the GNM is inefficient to implement for many practical

applications. To tackle this obstacle, inspired by the idea of the search direction in an itera-

tive algorithm named ProxDescent proposed in [22] for solving the composite optimization

problem (1.1) (with the outer function being prox-regular), Hu et al. [19] proposed a type

of linearized proximal algorithms with “constant-type” stepsize (CLP algorithms for short)

{vk}: 0 < v ≤ vk ≤ v̄ < +∞1 to solve problem (1.1), which include exact, inexact and

globalized versions (i.e., [19, Algorithms 10, 19 and 17], respectively). Moreover, Drusvy-

atskiy and Lewis [14] employed this idea to propose a prox-linear algorithm to minimize

the summation of a convex function and the composed function in (1.1). It was revealed

in [19] that their proposed algorithms enjoy an attractive computational advantage as each

subproblem involved is a strongly convex optimization problem, which is much easier to

solve than that of the GNM. For the CLP-type algorithms, the convergence properties rely

not only on assumption (B)/(B0) but also heavily on the order p in assumption (A). Under

assumptions (A) and (B)/(B0), the following convergence properties were established in [19]:

– The exact/inexact CLP algorithm converges locally to a solution of problem (1.1) at

a rate of 2
p if 1 ≤ p < 2, or p = 2 and the stepsize {vk} in the algorithm satisfies

inf vk > 2
η(x̄)[β(x̄)]2

2.

– The globalized CLP (GCLP for short) algorithm converges globally to a solution of

problem (1.1) at a rate of 2
p if 1 ≤ p < 2 and the generated sequence has a cluster point.

Thus, in the case when p = 1, CLP-type algorithms converge quadratically and maintain

the same convergence rate as that of the GNM [10]. However, from the theoretical results

mentioned above and also as illustrated by numerical results (see Table 1 of this paper and

[19, Figure 4]), CLP-type algorithms suffer from the following drawbacks or limitations:

– The exact/inexact CLP algorithm (resp. the globalized CLP algorithm) does not work

very efficiently in the case when p > 2 (resp. p ≥ 2).

– In the case when p = 2, the convergence performance of the exact/inexact CLP algorithm

is sensitive to the choice of the stepsize (that is, the choice of the stepsize depends on

the weak sharp minima modulus and the quasi-regular modulus).

Note that the order p in assumption (A) is an intrinsic constant of the outer function h in

the problem. The restriction that p ≤ 2 or p < 2 is too stringent as any (nontrivial) twice

continuously differentiable function does not have a set of weak sharp minima of order p < 2.

Thus, CLP-type algorithms cannot be applied to efficiently solve the important class of the

convex composite optimization problems with the outer function being a convex polynomial

(see [25]). Moreover, it is quite difficult or expensive to provide a clear estimation for the weak

sharp minima modulus and the quasi-regular modulus for some practical problems, especially

1 This was missed in the statements of [19, Algorithms 10, 17 and 19].
2 η(x̄) and β(x̄) are the local weak sharp minima modulus of order 2 and the quasi-regular modulus around

the involved point x̄, respectively.
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in the case when the involved problem is large-scale; this would cause some difficulties in

the choice of the stepsize when p = 2.

Instead of the “constant-type” stepsizes, we consider in the present paper the following

type of adaptive stepsizes:

uk := min{σ, θ((h ◦ F )(xk)− hmin)
α} for each k ≥ 0,

where 0 < θ < 1, α ≥ 0 and σ > 0 are constants, and then propose a type of linearized prox-

imal algorithms with the adaptive stepsizes (ALP algorithms for short), which also include

exact, inexact and globalized versions; in particular, the residual controls for the inexact

ALP algorithm are different from the ones used in the inexact CLP algorithm [19]. Obvi-

ously, in the implementation of ALP-type algorithms for the convex composite optimization

problem (1.1) with known data of the minimal value hmin, the computational cost of ALP-

type algorithms at each iteration is comparable to that of CLP-type algorithms, and thus

they inherit the same computational advantage mentioned above owned by CLP-type algo-

rithms. Under the same assumptions (A) and (B)/(B0) used for CLP-type algorithms, we

establish in the present paper the following convergence results for ALP-type algorithms

(assuming α > p− 2):

– The ALP algorithm converges locally to a solution of problem (1.1) at a rate of min{2, 2+α
p }.

– The globalized ALP (GALP for short) algorithm converges globally to a solution of

problem (1.1) at a rate of min{2, 2+α
p } if 1 ≤ p < 2 and the generated sequence has a

cluster point.

In the case when the outer function h in problem (1.1) satisfies that (h − hmin)
1
s is locally

Lipschitz for some positive constant s satisfying s ≥ 1 if 1 ≤ p < 2 and s >
1+

√
1+2p(p−2)

2 if

p ≥ 2, we further establish the following convergence results (assuming p−2
s < α ≤ 2s−2

p ):

– The ALP algorithm converges locally to a solution of problem (1.1) at a rate of min{ 2s
p , 2+αs

p }.
– The GALP algorithm converges globally to a solution of problem (1.1) at a rate of

min{ 2s
p , 2+αs

p } if the generated sequence has a cluster point.

Therefore, for the case when 1 ≤ p < 2, the GALP algorithm converges at a rate of

min{2, 2+α
p } or min{2s

p , 2+αs
p } (with α ≥ 0 and s ≥ 1), while the GCLP algorithm con-

verges at a rate of 2
p . See Theorems 1, 2 and 3 for more details.

These theoretical results together with numerical results (see Table 1 and Figures 1

and 2 of this paper) show that ALP-type algorithms not only eliminate the drawbacks

and limitations mentioned above for CLP-type algorithms, but also outperform CLP-type

algorithms on both the convergence rate and CPU time (choosing suitable parameter α can

further improve the convergence rate of ALP-type algorithms; see Figure 5). It should be

remarked that the idea of analysis for most results in this paper deviates significantly from

that of [19], except the approach for Theorem 1.

Two applications are provided as special examples of the convex inclusion problem dis-

cussed in section 4. One is the nonnegative inverse eigenvalue problem (NIEP). It is revealed
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from the numerical results that ALP-type algorithms are more efficient than CLP-type algo-

rithms and the popular Riemannian inexact Newton-CG method (RINC) [38] for the sparse

NIEP (see Table 3) and enjoy a faster convergence rate than CLP-type algorithms (also for

the dense NIEP); see Table 1 and Figure 1. The other is the wireless sensor network (WSN)

localization problem. The numerical results show that ALP-type algorithms enjoy a faster

convergence rate, and thus achieve more precise WSN localizations and spend less CPU time

than CLP-type algorithms and the popular semidefinite relaxation technique (SDR) [4] (see

Figure 2 and Table 6). Moreover, a fast initialization strategy based on the multidimensional

scaling (MDS) [21] is proposed, and the resulting ALP-type algorithms are more efficient

and robust than the corresponding CLP-type algorithms and SDR; see Table 7 and Figures

3 and 4.

The remainder of this paper is organized as follows. In section 2, Algorithm ALP and its

globalized version are proposed, where the main convergence theorems of these algorithms

are presented, as well as useful notation and preliminary results. The proofs of these conver-

gence theorems are provided in section 3. Applications to the convex inclusion problem and

numerical experiments on the NIEP and the WSN localization problem are demonstrated

in sections 4 and 5, respectively. A useful proposition and its technical proof are deferred to

the appendix.

2 Algorithms and their convergence results

2.1 Notation

Throughout this paper, we use the following notation. Let Rn be the n-dimensional Euclidean

space with inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. As usual, for x ∈ Rn and r > 0,

let B(x, r) denote the open ball of radius r centered at x. For g : Rn → R and ϵ ≥ 0, the set

of all ϵ-optimal solutions of g is defined by

ϵ- argmin g := {x ∈ Rn : g(x) ≤ inf
y∈Rn

g(y) + ϵ},

which is reduced to the optimal solution set argmin g when ϵ = 0. If g is convex, the

subdifferential of g at x is defined by

∂g(x) := {w ∈ Rn : g(y) ≥ g(x) + ⟨w, y − x⟩ for each y ∈ Rn} .

Consider a set Z ⊆ Rn. The dual cone (also called negative polar) of Z, the distance function

of Z and the projection onto Z are denoted by Z⊖, d(·, Z) and PZ(·); and are defined by

Z⊖ := {z ∈ Rn : ⟨z, y⟩ ≤ 0 for each y ∈ Z},

d(x,Z) := inf
y∈Z

∥x− y∥ and PZ(x) := {x̄ ∈ Z : ∥x− x̄∥ = d(x,Z)} for each x ∈ Rn,

respectively, where we adopt the convention that d(x, ∅) = +∞. Let T : Rn → Rm. The

image imT is defined by

imT := {T (x) ∈ Rm : x ∈ Rn},



6 Yaohua Hu et al.

and T is said to be Lipschitz on Z with modulus L > 0 if

∥T (x)− T (y)∥ ≤ L∥x− y∥ for each x, y ∈ Z.

Particularly, T is said to be locally Lipschitz around x̄ ∈ Rn if there exist r > 0 and Lr > 0

such that T is Lipschitz on B(x̄, r) with Lipschitz modulus Lr.

2.2 Algorithms

Recall that h and F are the functions involved in the convex composite optimization problem

(1.1), and that C and hmin are given by (1.2). Throughout the whole paper, we assume that

the minimal value hmin is priorly known (but not the set of minima C).

Remark 1 (a) There are many important applications in which the minimal value hmin is

known; e.g., the outer function h is taken to be a norm, a penalty function, or a distance

function to a closed and convex set. In particular, in the case when h(·) = 1
2∥ · ∥

2, (1.1) is

reduced to the nonlinear least squares problem; in the case when h(·) := 1
pd

p(·, Q) (with

p > 1 and Q ⊆ Rm being a closed convex set), (1.1) is reduced to the convex inclusion

problem (see Remark 5 in section 3). For these two cases, hmin = 0.

(b) For the general case, there are many efficient numerical algorithms for convex opti-

mization to approach the minimal values hmin and inf
d∈Rn

fx,u(d) in (2.1); see, e.g., [27].

In the following ALP-type algorithms for solving problem (1.1), we always assume that

σ > 0, 0 < θ < 1, α ≥ 0 and ρ ≥ α+ 2,

and define, for fixed u ≥ 0 and x ∈ Rn, the linearized proximal function (LP-function for

short) fx,u(·) : Rn → R by

fx,u(d) := h(F (x) + F ′(x)d) + u∥d∥2 for each d ∈ Rn. (2.1)

Algorithm ALP. Choose an initial point x0 ∈ Rn and set k := 0.

Step 1. Calculate wk := (h ◦ F )(xk)− hmin, uk := min{σ, θwα
k }, and choose 0 ≤ ϵk ≤ θwρ

k.

Step 2. If (h ◦ F )(xk) = inf
d∈Rn

fxk,uk
(d), then stop.

Step 3. If (h ◦ F )(xk) ≤ inf
d∈Rn

fxk,uk
(d) + ϵk, then set ϵk := θϵk and go back to Step 3.

Step 4. Find dk satisfying

fxk,uk
(dk) ≤ inf

d∈Rn
fxk,uk

(d) + ϵk. (2.2)

Step 5. Set xk+1 := xk + dk and update k := k + 1. Go back to Step 1.

Below, we propose a globalized version of Algorithm ALP, i.e., Algorithm GALP, based

on the backtracking line-search.

Algorithm GALP. Choose an initial point x0 ∈ Rn, γ ∈ (0, 1), λ ∈ (0, 1) and set k := 0.
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Step 1. Generate dk by Steps 1-4 in Algorithm ALP.

Step 2. Find tk which is the maximum value of γi for i = 0, 1, · · · such that

(h ◦ F )(xk + γidk)− (h ◦ F )(xk) ≤ λγi (fxk,uk
(dk)− (h ◦ F )(xk)) .

Step 3. Set xk+1 := xk + tkdk and update k := k + 1. Go back to Step 1.

Remark 2 (a) In the case when ϵk = 0 for each k ≥ 0, Algorithms ALP and GALP are re-

duced to the exact ALP algorithm and its globalized version, which are denoted as Algorithm

ALP-E and Algorithm GALP-E, respectively.

(b) Although the function fx,u(·) given by (2.1) is a special case of the function ϕ(·, x, ρ)
given by [7, (3.2)] with ρ(·) := u∥ · ∥, the direction chosen in Algorithm GALP is different

from the corresponding ones in [7, choices 4.2-4.4] in the following senses:

– In [7, choices 4.2-4.4], a regularized function ρ(·) is selected for all iterations, while in

Algorithm GALP, the regularized functions are adaptively selected as ρk(·) := uk∥ · ∥
with an adaptive stepsize uk := min{σ, θwα

k }.
– In Algorithm GALP, ∆k := fxk,uk

(dk)− (h ◦ F )(xk) is not required to be less than −ϵk
and so is different from the corresponding one in [7, choice 4.4].

– In Algorithm GALP, (2.2) is equivalent to dk ∈ Dk := {d̄ ∈ Rn : 0 ∈ ∂ϵkfxk,uk
(d̄)}, in

which Dk is different from the corresponding one in [7, choice 4.4]. Here for a convex

function g : Rn → R and ϵ ≥ 0,

∂ϵg(x) := {w ∈ Rn : g(y) ≥ g(x) + ⟨w, y − x⟩ − ϵ for each y ∈ Rn} .

2.3 Convergence results

Associated to problem (1.1), we consider the following inclusion

F (x) ∈ C, (2.3)

where C is defined by (1.2). For x ∈ Rn, let D(x) be defined by

D(x) := {d ∈ Rn : F (x) + F ′(x)d ∈ C}.

To establish the convergence results for Algorithms ALP and GALP, we need two important

notions: one is the notion of the quasi-regular point for an inclusion problem (2.3), and the

other is that of the local weak sharp minimizer of order p ≥ 1 for a function.

Definition 1 Let x̄ ∈ Rn and p ≥ 1. Then x̄ is said to be

(a) a quasi-regular point for (2.3) if there exist r > 0 and βr > 0 such that

βrd(0, D(x)) ≤ d(F (x), C) for each x ∈ B(x̄, r). (2.4)

(b) a local weak sharp minimizer of order p for g if there exist r > 0 and ηr > 0 such that

ηrd
p(x, argmin g) ≤ g(x)− g(x̄) for each x ∈ B(x̄, r).
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Remark 3 (a) The notion of the quasi-regular point was originally introduced by Li and Ng

[23]. Recall from Burke and Ferris [10] that a point x̄ is said to be a regular point for (2.3) if

ker(F ′(x̄)⊤) ∩ (C − F (x̄))⊖ = {0}.

By [10, Proposition 3.3], a regular point is also a quasi-regular point for (2.3).

(b) The concepts of weak sharp minimizers, introduced by Burke and Ferris [9], have

been widely explored and played a key role for convergence analysis of many algorithms,

see [10,24,39,40] and references therein. One natural extension of these concepts is that of

weak sharp minimizers of order p (p ≥ 1); see [6,20,28,34] and references therein. Here the

definition of a local weak sharp minimizer of order p was introduced by Studniarski and

Ward [34].

For the remainder of this section, we shall use the following blanket assumptions:
(x̄, p) ∈ Rn × [1,+∞);

x̄ is a quasi-regular point for (2.3);

F (x̄) ∈ C is a local weak sharp minimizer of order p for h;

F ′ is locally Lipschitz around x̄.

(2.5)

Furthermore, we write for any α ≥ 0 and s ≥ 1 that

qα := min

{
2,

2 + α

p

}
and qα,s := min

{
2s

p
,
2 + αs

p

}
. (2.6)

Below, we present convergence theorems for Algorithm ALP.

Theorem 1 Assume (2.5), and let α > p − 2. Then qα > 1, and for any δ > 0, there

exists rδ ∈ (0, δ) such that any sequence {xk}, generated by Algorithm ALP with initial

point x0 ∈ B(x̄, rδ), stays in B(x̄, δ) and converges to some point x∗ satisfying F (x∗) ∈ C

at a rate of qα. In particular, the sequence {xk} converges quadratically if α ≥ 2p− 2.

In the case when (h− hmin)
1
s is locally Lipschitz at F (x̄), we have the following conver-

gence theorem.

Theorem 2 Assume (2.5), and that

(h− hmin)
1
s is locally Lipschitz at F (x̄) (2.7)

for some positive constant s satisfying

s ≥ 1 if 1 ≤ p < 2 and s >
1+

√
1+2p(p−2)

2 if p ≥ 2. (2.8)

Suppose that p−2
s < α ≤ 2s−2

p . Then qα,s > 1, and for any δ > 0, there exists rδ ∈ (0, δ)

such that any sequence {xk}, generated by Algorithm ALP with initial point x0 ∈ B(x̄, rδ),

stays in B(x̄, δ) and converges to some point x∗ satisfying F (x∗) ∈ C at a rate of qα,s. In

particular, the sequence {xk} converges quadratically if s = p and α = 2− 2
p .
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Remark 4 Recall that f = h ◦ F is defined in (1.1).

(a) Theorem 2 remains true if the second and third assumptions in (2.5) are replaced by

the one that x̄ is a local weak sharp minimizer of order p for f and F (x̄) ∈ C; see the proof

of Theorem 2.

(b) Assumption (2.5) implies that x̄ is a local weak sharp minimizer of order p for f .

Indeed, by (2.5), there exist positive constants L, β and r such that, on B(x̄, 2r), F and

F ′ are Lipschitz with modulus L and (2.4) holds with βr := 1
β . Set r0 := min{ 1

L2β2 ,
r

2Lβ , r}
and fix x0 ∈ B(x̄, r0). Then [23, (4.23)] holds on B(x0, r) ⊆ B(x̄, 2r) with β. Let η := 1,

∆ := +∞, and let ξ and R∗ be defined as in [23, Theorem 5.1]. That is, ξ = βd(F (x0), C)

and R∗ =
1+Lβξ−

√
1−(Lβξ)2

Lβ . Then [23, (5.7)] holds and F ′ is Lipschitz on B(x0, R
∗) with

Lipschitz modulus L because

ξ = βd(F (x0), C) ≤ β∥F (x0)− F (x̄)∥ ≤ Lβ∥x0 − x̄∥ ≤ min

{
1

Lβ
,
r

2

}

and R∗ ≤ 2ξ ≤ r. Thus, all assumptions in [23, Theorem 5.1] are seen to hold, and so

[23, Theorem 5.1] is applicable. Clearly, Algorithm A (η,∆, x0) with initial point x0 in

[23] is well-defined, and then by [23, Theorem 5.1] the generated sequence {xn} converges

to some x∗ ∈ Rn with F (x∗) ∈ C and satisfies [23, (5.8)]; in particular, one has that

∥x0 − x∗∥ ≤ R∗ ≤ 2ξ = 2βd(F (x0), C), and so d(x, argmin f) ≤ 2βd(F (x), C) for all

x ∈ B(x̄, r0). This, together with the weak sharp minimizer assumption for h in (2.5), implies

that x̄ is a local weak sharp minimizer of order p for f (using a smaller r0 if necessary), as

desired to show.

The following corollary follows directly from Theorems 1 and 2.

Corollary 1 Assume (2.5), and that assumptions (2.7) and (2.8) in Theorem 2 hold. Then,

Algorithm ALP converges locally to some point x∗ satisfying F (x∗) ∈ C at a rate of qα if

α > p− 2 and at a rate of qα,s if p−2
s < α ≤ 2s−2

p .

Below, we provide the global convergence results for Algorithm GALP.

Proposition 1 Let {xk} be a sequence generated by Algorithm GALP-E, and suppose that

{xk} has an accumulation point x̄ such that F ′ is Lipschitz continuous around x̄. Then x̄

is a stationary point: 0 ∈ F ′(x̄)⊤∂h(F (x̄)), and F (x̄) ∈ C if x̄ is further a regular point for

(2.3).

Theorem 3 Let {xk} be a sequence generated by Algorithm GALP, and suppose that {xk}
has an accumulation point x̄ satisfying (2.5). Then {xk} converges to x̄ at a rate of qα if

1 ≤ p < 2, and at a rate of qα,s if assumptions (2.7) and (2.8) in Theorem 2 hold and
p−2
s < α ≤ 2s−2

p .
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3 Proofs of convergence theorems

3.1 Basic facts

Fact 4 below is known (see [3, Proposition A.24] for assertion (i) and [19, Lemma 6] for

assertion (ii)); Fact 5 is taken from [19, Lemma 9]. Recall that h and F are the functions

involved in the convex composite optimization problem (1.1), and that C and hmin are given

by (1.2).

Fact 4. Let L > 0 and W ⊆ Rn be such that F ′ is Lipschitz on W with modulus L. Then,

the following assertions hold for any x, x+ d ∈ W :

(i) ∥F (x+ d)− F (x)− F ′(x)d∥ ≤ L
2 ∥d∥

2;

(ii) if there are η > 0 and p ≥ 1 such that

ηdp(F (x) + F ′(x)d,C) ≤ h(F (x) + F ′(x)d)− hmin, (3.1)

then

d(F (x+ d), C) ≤ 1

2
L∥d∥2 + η−

1
p (h(F (x) + F ′(x)d)− hmin)

1
p . (3.2)

Fact 5. Let u > 0, x ∈ Rn, and let fx,u(·) : Rn → R be the LP-function defined by (2.1).

Then the following assertion holds for any ϵ ≥ 0 and d ∈ ϵ- argmin fx,u:

u∥d∥2 ≤ ud2(0, D(x)) + ϵ and h(F (x) + F ′(x)d) ≤ hmin + ud2(0, D(x)) + ϵ.

3.2 Proofs for main theorems

Proof of Theorem 1. The assertion that qα = min{2, 2+α
p } > 1 is clear because α > p − 2.

To proceed, note by assumption (2.5) that there exist positive constants η, δ̄ and L ≥ 1

such that F ′ is Lipschitz on B(x̄, δ̄) with modulus L (so the conclusions in Fact 4 hold with

B(x̄, δ̄) in place of W ),

∥F ′(x)∥ ≤ L, ηd(0, D(x)) ≤ d(F (x), C), ((h◦F )(x)−hmin)
α < min{1, σ} for each x ∈ B(x̄, δ̄),

(3.3)

and

ηdp(y, C) ≤ h(y)−hmin ≤ L∥y− ȳ∥ for each (y, ȳ) ∈ B(F (x̄), δ̄)× (C ∩B(F (x̄), δ̄)). (3.4)

Let δ > 0 be arbitrary. Without loss of generality, one may assume that

δ ≤ min

{
2δ̄

(5c+ 2)L
,

η

2c2L
,

(
η1+p

4pθL2α(1 + L4)

) 1
2+α−p

}
, (3.5)

where c := 1 + L2. Set rδ := δmin
{
1, η

2L

}
. Below, we show that rδ is as desired.

To do this, let x0 ∈ B(x̄, rδ), and let {xk}, together with {dk}, be generated by Algorithm

ALP with initial point x0. Now fix k ∈ N and assume xk ∈ B(x̄, (2c+1)δ); then xk ∈ B(x̄, δ̄)
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(as 2c + 1 < (5c+2)L
2 ). One checks by Step 1 of Algorithm ALP that wα

k = ((h ◦ F )(xk) −
hmin)

α ≤ min{1, σ} (by (3.3)); hence, wk ≤ 1 and uk = θwα
k . Furthermore, by Fact 5

(applied to xk, dk in place of x, d) and Step 1 of Algorithm ALP,

∥dk∥2 ≤ d2(0, D(xk)) +
ϵk
uk

≤ d2(0, D(xk)) + w2
k, (3.6)

(noting wρ−α
k ≤ w2

k as ρ ≥ α + 2 and wk ≤ 1). To proceed, we first verify the following

implications:

∥d∥ ≤ cδ

2
=⇒ F (xk) + F ′(xk)d ∈ B(F (x̄), δ̄), (3.7)

(so F (xk) ∈ B(F (x̄), δ̄) as d = 0) and

d(0, D(xk)) ≤
δ

2
=⇒ [wk ≤ L2d(0, D(xk)) and ∥dk∥ ≤ cd(0, D(xk))]. (3.8)

In fact, note by (3.3) that ∥F ′(xk)∥ ≤ L and so ∥F (xk) − F (x̄)∥ ≤ L∥xk − x̄∥. Thus, if
∥d∥ ≤ cδ

2 , then

∥F (xk) + F ′(xk)d− F (x̄)∥ ≤ L∥xk − x̄∥+ L∥d∥ < L(2c+ 1)δ + L
c

2
δ ≤ δ̄

(by (3.5)); hence (3.7) is checked. To show (3.8), we assume d(0, D(xk)) ≤ δ
2 . Then, letting

d̃k ∈ PD(xk)(0), one has that F (xk)+F ′(xk)d̃k ∈ C, and that ∥d̃k∥ ≤ δ
2 ≤ cδ

2 (noting c ≥ 1).

Therefore, F (xk) + F ′(xk)d̃k ∈ C ∩ B(F (x̄), δ̄) by (3.7). Thus it follows from (3.4) (with

F (xk), F (xk) + F ′(xk)d̃k in place of y, ȳ) and (3.3) that

wk = (h ◦ F )(xk)− hmin ≤ L2∥d̃k∥ = L2d(0, D(xk)).

Moreover, one sees by (3.6) that

∥dk∥2 ≤ d2(0, D(xk)) + w2
k ≤ d2(0, D(xk)) + L4d2(0, D(xk)) ≤ c2d2(0, D(xk)).

Thus implication (3.8) is shown.

Below, we shall use mathematical induction to show that for each k ≥ 0

xk ∈ B(x̄, (2c+ 1)δ), d(F (xk), C) ≤ ηδ

(
1

2

)qkα+k

and ∥dk∥ ≤ cδ

(
1

2

)qkα+k

. (3.9)

Granting this, one has that {xk} is a Cauchy sequence and converges to a point x∗ satisfying

F (x∗) ∈ C (as F is continuous and C is closed); moreover

∥xk − x∗∥ ≤
+∞∑
i=k

∥di∥ ≤ 2cδ

(
1

2

)qkα+k

,

and so {xk} converges to x∗ at a rate of qα.

Note first that (3.9) hold for k = 0 because, ∥x0 − x̄∥ < δmin
{
1, η

2L

}
≤ δ (and so

x0 ∈ B(x̄, (2c+ 1)δ)),

d(F (x0), C) ≤ ∥F (x0)− F (x̄)∥ ≤ L∥x0 − x̄∥ ≤ 1

2
ηδ (3.10)
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(noting ∥F ′(·)∥ ≤ L by (3.3)), and ∥d0∥ ≤ cd(0, D(x0)) ≤ 1
2cδ by (3.8) as d(0, D(x0)) ≤

1
ηd(F (x0), C) ≤ δ

2 , thanks to (3.3) and (3.10). Now assume that (3.9) holds for each k =

0, 1, · · · , i. Then, xi+1 ∈ B(x̄, (2c + 1)δ) (i.e., the first assertion in (3.9) is checked for

k = i+ 1) as

∥xi+1 − x̄∥ ≤
i∑

j=0

∥dj∥+ ∥x0 − x̄∥ ≤ cδ
i∑

j=0

(
1

2

)j

+ δ < (2c+ 1)δ.

Since by (3.9) (applied to i in place of k) and (3.3) that

xi ∈ B(x̄, (2c+ 1)δ) ⊆ B(x̄, δ̄) and d(0, D(xi)) ≤
1

η
d(F (xi), C) ≤ δ

(
1

2

)qiα+i

<
δ

2
,

(3.11)

it follows from (3.3) and implication (3.8) that

wα
i ≤ min{1, σ}, wi ≤ L2d(0, D(xi)) and ∥di∥ ≤ cd(0, D(xi)) ≤

1

2
cδ. (3.12)

Thus, F (xi) + F ′(xi)di ∈ B(F (x̄), δ̄) by implication (3.7) (applied to xi, di in place of

xk, d). Therefore, with xi and di in place of x and d, (3.1) is satisfied by (3.4) (applied to

F (xi) + F ′(xi)di in place of y), and then (3.2) is true by Fact 4(ii). That is,

d(F (xi+1), C) ≤ L

2
∥di∥2 + η−

1
p (h(F (xi) + F ′(xi)di)− hmin)

1
p . (3.13)

Note further that di ∈ ϵi- argmin fxi,ui . Fact 5 is applicable to xi, di, ui, ϵi in place of x, d, u, ϵ,

and we have that

h(F (xi) + F ′(xi)di)− hmin ≤ uid
2(0, D(xi)) + ϵi. (3.14)

By (3.12), one sees by definition that

ui = θwα
i ≤ θL2αdα(0, D(xi)) and ϵi ≤ θwρ

i ≤ θwα+2
i ≤ θL2α+4dα+2(0, D(xi))

(as wi ≤ 1 and ρ ≥ α + 2); hence uid
2(0, D(xi)) + ϵi ≤ θL2α(1 + L4)dα+2(0, D(xi)). This,

together with (3.14) and the estimate d(0, D(xi)) ≤ δ
(
1
2

)qiα+i
in (3.11), implies that

η−
1
p (h(F (xi) + F ′(xi)di)− hmin)

1
p ≤

(
η−1θL2α(1 + L4)

) 1
p δ

2+α
p

(
1

2

) 2+α
p (qiα+i)

.

Since ∥di∥ ≤ cδ
(
1
2

)qiα+i
by (3.9), it follows from (3.13) that

d(F (xi+1), C) ≤ Lc2δ · δ
(
1
2

)2(qiα+i)+1
+ 2

(
η−1θL2α(1 + L4)

) 1
p δ

2+α−p
p · δ

(
1
2

) 2+α
p (qiα+i)+1

≤ ηδ
(
1
2

)qα(qiα+i)+1

(3.15)
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because Lc2δ + 2
(
η−1θL2α(1 + L4)

) 1
p δ

2+α−p
p ≤ η by (3.5) and qα = min{2, 2+α

p }. Since
qα(q

i
α + i) + 1 ≥ qi+1

α + i+ 1 (as qα > 1), it follows from (3.15) that the second assertion in

(3.9) holds for k = i+ 1. Consequently, we further have by (3.3) that

d(0, D(xi+1)) ≤
1

η
d(F (xi+1), C) ≤ δ

(
1

2

)qi+1
α +i+1

≤ δ

2
,

and implication (3.8) is applicable to concluding that ∥di+1∥ ≤ cd(0, D(xi+1)) ≤ cδ
(
1
2

)qi+1
α +i+1

.

Thus the last assertion in (3.9) is also checked for k = i+ 1, completing the proof.

To prove Theorem 2, we write X∗ := argmin f and assume, without loss of generality,

that hmin = 0 for simplicity. We proceed with the following key lemma.

Lemma 1 Suppose that all assumptions of Theorem 2 hold. Then there exist δ̂ > 0 and

c > 0 such that the following two implications hold for any sequence {xk}, together with the

associated sequence {dk}, generated by Algorithm ALP:

xk ∈ B(x̄, δ̂) =⇒ ∥dk∥ ≤ cd(xk, X
∗) (3.16)

and

xk, xk+1 ∈ B(x̄, δ̂) =⇒ d(xk+1, X
∗) ≤ cdqα,s(xk, X

∗). (3.17)

Proof. As in the beginning of the proof for Theorem 1, there exist positive constants η, L ≥ 1

and 0 < δ̄ ≤ 1 such that F ′ is Lipschitz onB(x̄, δ̄) with modulus L (so the conclusions in Fact

4 hold with B(x̄, δ̄) in place of W ) and that (3.3), together with the following inequalities,

holds:

h
1
s (y)− h

1
s (y′) ≤ L∥y − y′∥ for any y, y′ ∈ B(F (x̄), δ̄); (3.18)

ηdp(x,X∗) ≤ (h ◦ F )(x) for each x ∈ B(x̄, δ̄) (3.19)

(see Remark 4(b) for (3.19)). Define

c := max

{
c1,

(
c

1
s
2 +

L2

2
c21

)s

,

(
1

η

) 1
p
(
c

1
s
2 +

L2

2
c21

) s
p

}
and δ̂ :=

δ̄

2
min

{
1,

1

2L

}
,

(3.20)

where c1 :=
√

L2s

2sθηα + L4s + 1 and c2 := L2s

2s + θL2αs + θL4s+2αs. Below, we show that c

and δ̂ are as desired.

To do this, we have by the similar argument as we did for proving (3.7) the following

implication:[
x ∈ B(x̄, 2δ̂) and ∥d∥ ≤ 2δ̂

]
=⇒ F (x) + F ′(x)d ∈ B(F (x̄), δ̄). (3.21)

Now suppose that xk ∈ B(x̄, δ̂) (and so xk ∈ B(x̄, δ̄)). Let x̄k ∈ PX∗(xk), and set d̄k :=

x̄k − xk. Then, ∥d̄k∥ < δ̂ and x̄k ∈ B(x̄, 2δ̂) ⊆ B(x̄, δ̄) as ∥d̄k∥ ≤ ∥xk − x̄∥ < δ̂ and

∥x̄k − x̄∥ ≤ ∥d̄k∥+ ∥xk − x̄∥ < 2δ̂. Thus, using (3.3), one sees that

wk ≤ 1 and ∥F (xk)− F (x̄k)∥ ≤ L∥xk − x̄k∥. (3.22)
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Furthermore, from implication (3.21), it follows that each of F (xk), F (x̄k) and F (xk) +

F ′(xk)d̄k belongs to B(F (x̄), δ̄) (by applying (3.21) to 0 and d̄k in place of d, respectively).

Thus one applies (3.18) and (3.19), together with (3.22), to check that

wk = (h◦F )(xk) ≥ ηdp(xk, X
∗) and wk = (h◦F )(xk) ≤ Ls∥F (xk)−F (x̄k)∥s ≤ L2s∥d̄k∥s

(3.23)

(noting that (h ◦ F )(x̄k) = hmin = 0). By the choice of uk and wk in Step 1 of Algorithm

ALP, we have that

ϵk ≤ θwρ
k = ukw

ρ−α
k ≤ ukw

2
k ≤ ukL

4s∥d̄k∥2s (3.24)

as ρ − α ≥ 2 and wk ≤ 1. Recalling the LP-function fxk,uk
given in (2.1) and using (3.18)

(with F (xk) + F ′(xk)d̄k, F (xk + d̄k) in place of y, y′) and Fact 4(i), one concludes that

fxk,uk
(d̄k) = h(F (xk) + F ′(xk)d̄k) + uk∥d̄k∥2 ≤ L2s

2s
∥d̄k∥2s + uk∥d̄k∥2

(noting that (h ◦ F )(xk + d̄k) = 0). Since by (2.2) fxk,uk
(dk) ≤ fxk,uk

(d̄k) + ϵk, it follows

from (3.24) that

fxk,uk
(dk) ≤

L2s

2s
∥d̄k∥2s + uk

(
∥d̄k∥2 + L4s∥d̄k∥2s

)
. (3.25)

Noting by (3.23) that uk = θwα
k ≥ θηαdαp(xk, X

∗) = θηα∥d̄k∥αp, we have from (2.1) and

(3.25) that

∥dk∥2 ≤ fxk,uk
(dk)

uk
≤ L2s

2sθηα
∥d̄k∥2s−αp+ ∥d̄k∥2+L4s∥d̄k∥2s ≤ c21∥d̄k∥min{2s−αp,2,2s} (3.26)

(noting that ∥d̄k∥ < δ̄ ≤ 1). This implies that ∥dk∥ ≤ c1∥d̄k∥ = c1d(xk, X
∗) because

min{2s − αp, 2, 2s} = 2 by assumptions α ≤ 2s−2
p and s ≥ 1. Hence, implication (3.16) is

shown.

To verify implication (3.17), suppose that xk, xk+1 ∈ B(x̄, δ̂). Then dk ∈ B(x̄, 2δ̂) (noting

that ∥dk∥ ≤ ∥xk+1 − x̄∥+ ∥xk − x̄∥), and so implication (3.21) is applicable to getting that

both F (xk) +F ′(xk)dk and F (xk+1) belong to B(F (x̄), δ̄). Note by hmin = 0 and (2.1) that

h(F (xk) + F ′(xk)dk) ≤ fxk,uk
(dk). We check by (3.18) and Fact 4(i) that

(h ◦ F )
1
s (xk+1) ≤ f

1
s
xk,uk(dk) + L∥F (xk+1)− F (xk)− F ′(xk)dk∥ ≤ f

1
s
xk,uk(dk) +

L2

2
∥dk∥2.
(3.27)

By (3.23), one has that uk = θwα
k ≤ θL2αs∥d̄k∥αs. This and (3.25) imply that

fxk,uk
(dk) ≤

L2s

2s
∥d̄k∥2s + θL2αs

(
∥d̄k∥2+αs + L4s∥d̄k∥2s+αs

)
≤ c2∥d̄k∥min{2s,2+αs,2s+αs}

(recalling that ∥d̄k∥ < δ̄ ≤ 1). Combining this, (3.26) and (3.27), we conclude that

(h◦F )
1
p (xk+1) ≤

(
f

1
s
xk,uk(dk) +

L2

2
∥dk∥2

) s
p

≤
(
c

1
s
2 +

L2

2
c21

) s
p

∥d̄k∥
s
p min{2s−αp,2, 2+αs

s ,2+α,2s}.
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Since α ≥ 0 and min{2s− αp, 2, 2s} = 2 as noted earlier, it follows that

min

{
2s− αp, 2,

2 + αs

s
, 2 + α, 2s

}
= min

{
2,

2 + αs

s

}
.

Hence we have by the definition of qα,s in (2.6) that

(h ◦ F )(xk+1) ≤
(
c

1
s
2 +

L2

2
c21

)s

dpqα,s(xk, X
∗) (3.28)

(noting that ∥d̄k∥ = d(xk, X
∗)). This, together with (3.19), implies that

d(xk+1, X
∗) ≤

(
1

η

) 1
p

(h ◦ F )
1
p (xk+1) ≤

(
1

η

) 1
p
(
c

1
s
2 +

L2

2
c21

) s
p

dqα,s(xk, X
∗),

and thus, implication (3.17) is checked. The proof is complete.

Proof of Theorem 2. One can verify the assertion that qα,s = min{ 2s
p , 2+αs

p } > 1 by the

assumption that p−2
s < α and the assumption of s in (2.8). Let δ̂ and c be positive constants

given by Lemma 1 such that implications (3.16) and (3.17) hold. Let δ > 0 be arbitrary,

and without loss of generality, we assume that δ ∈ (0, δ̂). Let rδ := 1
1+2c min

{
δ,
(

1
2c

) 1
qα,s−1

}
,

where c is given by (3.20). Below, we shall show that rδ is as desired.

To do this, let x0 ∈ B(x̄, rδ) ⊆ B(x̄, δ̂), and let {xk} and {dk} be sequences generated by

Algorithm ALP with initial point x0. Then d(x0, X
∗) < rδ ≤ 1

1+2c

(
1
2c

) 1
qα,s−1 <

(
1
2c

) 1
qα,s−1 .

Below we will verify that {xk} ⊆ B(x̄, δ). Granting this, one has by (3.16) and (3.17) that

(4.4) holds with qα,s in place of q (recalling that dk = xk+1 − xk), and then Proposition A

in Appendix is applicable to completing the proof.

Since x0 ∈ B(x̄, rδ), it follows that x0 ∈ B(x̄, δ) and that ∥d0∥ ≤ cd(x0, X
∗) ≤ crδ by

(3.16). Hence ∥x1 − x̄∥ ≤ ∥x0 − x̄∥ + ∥d0∥ < (1 + c)rδ < δ, and so x1 ∈ B(x̄, δ). Thus, we

check by (3.17) that d(x1, X
∗) ≤ 1

2d(x0, X
∗) as cdqα,s−1(x0, X

∗) ≤ 1
2 as noted earlier. Now

fix i ∈ N and assume that

xk ∈ B(x̄, δ) and d(xk, X
∗) ≤ 1

2
d(xk−1, X

∗) (3.29)

hold for all k ≤ i. Then, d(xk, X
∗) ≤ ( 12 )

kd(x0, X
∗) for each k ≤ i; hence one has by (3.16)

that
i∑

k=0

∥dk∥ ≤ c
i∑

k=0

d(xk, X
∗) < crδ

i∑
k=0

(
1

2

)k

< 2crδ.

Recalling that x0 ∈ B(x̄, rδ), it follows that

∥xi+1 − x̄∥ ≤ ∥x0 − x̄∥+
i∑

k=0

∥dk∥ < (1 + 2c)rδ ≤ δ,

and so xi+1 ∈ B(x̄, δ). This, together with (3.17), implies that (3.29) is satisfied for k =

i + 1 because d(xi+1, X
∗) ≤ cdqα,s−1(xi, X

∗)d(xi, X
∗) by (3.17) and cdqα,s−1(xi, X

∗) ≤
cdqα,s−1(x0, X

∗) ≤ 1
2 . Therefore, (3.29) holds for all k ≥ 1 by mathematical induction, and

the proof is complete.
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Proof of Proposition 1. By [19, Remark 16], it suffices to verify that 0 ∈ F ′(x̄)⊤∂h(F (x̄)).

To do this, let {dk} be the associated sequence generated by Algorithm GALP-E, and note

that each LP-function fxk,uk
given in (2.1) is strongly convex. Then, for each k ≥ 0, one has

that

∆k := fxk,uk
(dk)− (h ◦ F )(xk) ≤ 0 and Dk := argmin fxk,uk

= {dk},

and that

0 ∈ Dk ⇐⇒ ∆k = 0 ⇐⇒ 0 ∈ F ′(xk)
⊤∂h(F (xk))

(noting the chain rule for Clarke subgradient: ∂f(·) = F ′(·)⊤∂h(F (·)); see [7, Lemma

2.3(a)]). Thus, conditions (a)-(c) in [7, (2.2)] are satisfied and then {xk} can be regarded

as a sequence generated by the algorithm [7, (2.1)]. Therefore, [7, Theorem 2.4] is applica-

ble (following the line of analysis in the proof of [7, Theorem 2.4], one can check that the

conclusion in [7, Theorem 2.4] remains true under our assumptions).

Now let {xki} ⊆ {xk} be a subsequence converging to x̄. Since f = h ◦ F is continuous

at x̄, it follows that

lim
i→∞

wki = w̄ := (h ◦ F )(x̄)− hmin and lim
i→∞

uki = ū := min{σ, θw̄α}. (3.30)

Note that, if ū = 0, then w̄ = 0 (so F (x̄) ∈ C), and the conclusion follows trivially. Therefore,

we may assume that ū > 0. Set d̄ := arg min
d∈Rn

fx̄,ū(d), which is well-defined as fx̄,ū is strongly

convex (recalling ū > 0). Since, for each i ≥ 0, by (2.1) that

uki∥dki∥2 ≤ fxki
,uki

(dki)− hmin ≤ fxki
,uki

(0)− hmin = wki ,

it follows that {dki} is bounded. Then, applying [7, Theorem 2.4], we have that limi→+∞ ∆ki =

0, and so

(h ◦ F )(x̄) = lim
i→∞

(h ◦ F )(xki) = lim
i→∞

fxki
,uki

(dki). (3.31)

Furthermore, by the definition of fx̄,ū, one checks that

fxki
,uki

(dki)− fx̄,ū(d̄) ≤ h(F (xki) + F ′(xki)d̄)− h(F (x̄) + F ′(x̄)d̄) + (uki − ū)∥d̄∥2.

This, together with (3.30), implies that limi→∞fxki
,uki

(dki) ≤ fx̄,ū(d̄) as h, F , and F ′ are

respectively continuous at the reference points. Hence, combining this with (3.31), we see

that fx̄,ū(0) = (h◦F )(x̄) ≤ min
d∈Rn

fx̄,ū(d) (noting the choice of d̄), and so 0 ∈ F ′(x̄)⊤∂h(F (x̄))

by the optimality condition (applied to the LP-function fx̄,ū). The proof is complete.

Proof of Theorem 3. As explained in the proof for [19, Theorem 18] (see lines 1-12 on page

1220 in [19]), it suffices to verify that there exists δ > 0 such that

xk ∈ B(x̄, δ) =⇒ tk = 1
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for each k ≥ 0. Suppose on the contrary that, there exist a sequence {δi} ⊆ (0, 1) with δi ↓ 0

and a subsequence {ki} ⊆ N such that xki ∈ B(x̄, δi) and tki ̸= 1. Then, by the definition of

tki ,

(h ◦ F )(xki + dki)− (h ◦ F )(xki) > λ
(
h(F (xki) + F ′(xki)dki) + uki∥dki∥2 − (h ◦ F )(xki)

)
(3.32)

holds for each ki, and by (2.5),

xki → x̄, F (xki) → F (x̄), d(F (xki), C) → 0 and d(xki , X
∗) → 0. (3.33)

To complete the proof, we only need to show that λ > 1 to reach a contradiction because

λ ∈ (0, 1) by the choice of λ in Algorithm GALP.

Below, we will only verify the case when s ≥ 1 such that assumption (2.7) in Theorem

2 holds and p−2
s < α ≤ 2s−2

p as the proof for the other case is similar to that presented in

the proof for [19, Theorem 18] (see pages 1218-1219). To do this, let η, c, δ̄ and δ̂ be given

at the beginning of the proof for Lemma 1. Then, regarding each xki as an initial point of

Algorithm ALP, one has that (3.16) and (3.19) hold, and that, if both xki and xki + dki

belong to B(x̄, δ̂), then (3.28) holds with xki and xki + dki in place of xk and xk+1, and so

the following implication holds for each ki:

xki , xki + dki ∈ B(x̄, δ̂) =⇒ (h ◦ F )(xki + dki)− hmin ≤ cdpqα,s(xki , X
∗), (3.34)

as
(
c

1
s
2 + L2

2 c21

)s
≤ c (see (3.20)). Then, from (3.16) and (3.33), it follows that ∥dki∥ → 0.

Thus, without loss of generality, we may assume that xki
, xki

+ dki
∈ B(x̄, δ̂) for each i ≥ 0,

and so hmin + cdpqα,s(xki , X
∗) ≥ (h ◦ F )(xki + dki) by (3.34). This, together with (3.32),

implies that

hmin − (h ◦ F )(xki) + cdpqα,s(xki , X
∗) > λ

(
h(F (xki) + F ′(xki)dki) + uki∥dki∥2 − (h ◦ F )(xki)

)
≥ λ

(
hmin + uki∥dki∥2 − (h ◦ F )(xki)

)
.

Hence,

(1− λ)(hmin − (h ◦ F )(xki)) + cdpqα,s(xki , X
∗) ≥ λuki∥dki∥2 > 0. (3.35)

On the other hand, it follows from (3.19) that

(1− λ)(hmin − (h ◦ F )(xki)) + cdpqα,s(xki , X
∗) ≤ (λ− 1)ηdp(xki , X

∗) + cdpqα,s(xki , X
∗).

Combining this with (3.35) yields that 0 < (λ − 1)η + cdp(qα,s−1)(xki , X
∗). Passing to the

limit and noting that d(xki , X
∗) → 0 by (3.33), we have that (λ − 1)η > 0 and so λ > 1,

completing the proof.

We end this section with the following remark about the applications of results obtained

in the previous sections to the convex inclusion problem.
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Remark 5 We consider the following convex inclusion problem:

F (x) ∈ Q, (3.36)

whereQ ⊆ Rm is a closed convex set, and as assumed in the preceding sections, F : Rn → Rm

is continuously differentiable. It can be cast into framework (1.1) with the outer convex

function h : Rm → R defined by

h(y) :=
1

p
dp(y,Q) for each y ∈ Rm, (3.37)

where p ≥ 1. Clearly, hmin = 0; (h−hmin)
1
p is (globally) Lipschitz on Rm, and each y ∈ Q is

a (global) weak sharp minimizer of order p for h. Moreover, the corresponding LP-function

fx,u for fixed x ∈ Rn and u ≥ 0 in (2.1) is reduced to

fx,u(d) :=
1

p
dp(F (x) + F ′(x)d,Q) + u∥d∥2 for each d ∈ Rn. (3.38)

For the remainder of this remark, we assume that p > 1. Then, thanks to the first-

order optimality condition, solving the subproblem min
d∈Rn

fx,u(d) in ALP-type algorithms is

equivalent to solve the following nonlinear equations:

Gx,u(d) := f ′
x,u(d) = dp−2(F (x) + F ′(x)d,Q)F ′(x)⊤(I− PQ)(F (x) + F ′(x)d) + 2ud = 0,

where I denotes the identity operator. This motivates us to propose the following algorithm

for solving the convex inclusion problem (3.36).

Algorithm 1. Choose initial point x0 ∈ Rn and set k := 0.

Step 1. Calculate wk := 1
pd

p(F (xk), Q), uk := min{σ, θwα
k }, and choose 0 ≤ ϵk ≤ θwρ

k.

Step 2. If Gxk,uk
(0) = 0, then stop.

Step 3. If ∥Gxk,uk
(0)∥ ≤

√
2ukϵk, then set ϵk := θϵk and go back to Step 3.

Step 4. Calculate dk by approximately solving Guk,xk
(d) = 0 such that ∥Gxk,uk

(dk)∥ ≤√
2ukϵk.

Step 5. Set xk+1 := xk + dk and update k := k + 1. Go back to Step 1.

The corresponding globalized version of Algorithm 1 is as follows.

Algorithm 2. Choose initial point x0 ∈ Rn, γ ∈ (0, 1), λ ∈ (0, 1) and set k := 0.

Step 1. Generate dk by Steps 1-4 in Algorithm 1.

Step 2. Find tk which is the maximum value of γi for i = 0, 1, · · · , such that

1
pd

p(F (xk + γidk), Q)− 1
pd

p(F (xk), Q) ≤ λγi
(
fxk,uk

(dk)− 1
pd

p(F (xk), Q)
)
.

Step 3. Set xk+1 := xk + tkdk and update k := k + 1. Go back to Step 1.
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Below we present the convergence properties of Algorithms 1 and 2 by virtue of the

established convergence theorems for ALP-type algorithms.

(a) One can check that the sequence generated by Algorithm 1 can also be regarded as

a sequence generated by Algorithm ALP with h given by (3.37).

(b) Suppose that x̄ ∈ Rn satisfies F (x̄) ∈ Q and is a quasi-regular point for inclusion

(3.36). Suppose further that F ′ is locally Lipschitz around x̄. Then, any sequence {xk}
generated by Algorithm 1 converges locally to some point x∗ satisfying F (x∗) ∈ Q at a rate

of qα if α > max{p − 2, 2 − 2
p} and at a rate of qα,p if 1− 2

p < α ≤ 2 − 2
p . In fact, this

result can be verified directly by assertion (a) of this remark and Corollary 1 (applied to

the function h defined in (3.37); noting that the third assumption in (2.5) and assumptions

(2.7) and (2.8) in Theorem 2 hold as noted in the beginning of this remark).

(c) Let {xk} be a sequence generated by Algorithm 2. Suppose that {xk} has an accu-

mulation point x̄ ∈ Rn satisfying F (x̄) ∈ Q such that x̄ is a quasi-regular point for inclusion

(3.36) and F ′ is locally Lipschitz around x̄. Then, {xk} converges to x̄ at a rate of qα if

1 < p < 2 and α > 2 − 2
p and at a rate of qα,p if 1− 2

p < α ≤ 2 − 2
p . In fact, this result

follows directly from assertion (a) of this remark and Theorem 3.

Note that under the quasi-regularity condition, the convex composite optimization prob-

lem (1.1) can be represented as the inclusion problem F (x) ∈ C := {y ∈ Rm : h(y) = hmin}
(i.e., (3.36) with Q := C). However, it is still valuable to study the efficient algorithms

under the framework of the convex composite optimization problem (1.1). Indeed, from a

practical point of view, it might be inefficient to implement Algorithms 1 and 2 because the

“complete” data of C and the projection to C are not easy to calculate in general (although

it is implementable to find an element in C by convex optimization algorithms). Moreover,

based on the convergence theorems in section 3, the convergence rates of Algorithms ALP

and GALP heavily depends on the selection of the outer function h.

4 Applications and numerical experiments

In this section, we discuss applications to the nonnegative inverse eigenvalue problem (NIEP)

and the wireless sensor network (WSN) localization problem by virtue of the convex inclusion

framework, and compare the numerical performance of Algorithm GALP (Algorithm 2)

with [19, Algorithm 17] (rewritten as Algorithm GCLP for convenience), as well as effective

algorithms in applications. Numerical experiments are implemented in MATLAB R2015b

and the hardware environment is Intel Core i7 3740QM, @2.70 GHz (8 CPUs), 16.00 GB of

RAM.

In the numerical experiments, we set the parameters σ = 0.005, vk ≡ 1
2σ = 100, γ = 0.9,

θ = 0.5, λ = c = 0.9, α = 1, ρ = 2 for Algorithms GALP and GCLP (if parameters are need-

ed), with which Algorithm GCLP performs well as in [19]. The semismooth Newton method

[31] and Newton method are applied to solve the subproblems in Algorithm GALP/GCLP

when p = 2 and p > 2, respectively. The stopping criteria of Algorithms GCLP and GALP

are listed as follows.
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– Outer iteration: the number of iterations is greater than 100, or the residual (RES)/root

mean square distance (RMSD) meets accuracy requirements.

– Inner iteration: the number of iterations is greater than 50 or

– Algorithm GCLP: Gxk,
1
2v
(d) < max{θ∥dk−1∥ρ, 10−(2p+4)};

– Algorithm GALP: Gxk,uk
(d) < max{

√
2θukw

ρ
k, 10

−(2p+4)}.

4.1 Problem I: NIEP

The research about the NIEP owns a long history since 1940s [35,29,30] (one can also refer to

the review articles [12,13] for more details) and nonnegative matrices play a significant role

in various areas such as control design, linear complementarity problems, Markov chains and

graph theory; see [1,2,17] and references therein. In this subsection, we investigate the NIEP

formulated as follows: Given a n-tuple {λ1, λ2, · · · , λn} as a realizable spectrum of nonnega-

tive matrices, find a nonnegative matrix X ∈ Rn×n whose eigenvalues are {λ1, λ2, · · · , λn}.
The following notation is used in this subsection. Let Rn×n be the set of all n × n real

matrices and Rn×n
+ (resp. Rn×n

− ) be the nonnegative (resp. nonpositive) orthant of Rn×n.

Let In×n be the n × n identity matrix and O(n) denote the set of all n × n orthogonal

matrices, i.e., O(n) := {U ∈ Rn×n : U⊤U = In×n}, where U⊤ denotes the transpose of the

matrix U .

For the set of prescribed {λ1, λ2, · · · , λn}, we assume

λ2i−1 := ai+bi
√
−1, λ2i := ai−bi

√
−1 for each 1 ≤ i ≤ s; and λi ∈ R for each i ≥ 2s+1,

where ai, bi ∈ R with bi ̸= 0 for each 1 ≤ i ≤ s. Define a block diagonal matrix Λ ∈ Rn×n by

Λ := blkdiag(λ
[2]
1 , · · · , λ[2]

s , λ2s+1, · · · , λn) with each λ
[2]
i :=

[
ai bi
−bi ai

]
,

and set I := {(i, j) : i ≥ j or Λij ̸= 0} and V := {V ∈ Rn×n : Vij = 0 for each (i, j) ∈ I}.
Define further the set Q ⊆ Rn×n × Rn×n and the mapping F : Rn×n × V → Rn×n × Rn×n

by

Q := Rn×n
+ ×{0} and F (U, V ) := (U(Λ+V )U⊤, UU⊤− In×n) for each U ∈ Rn×n, V ∈ V,

(4.1)

respectively. Then, with the help of real Schur decomposition (see [18, Theorem 7.4.1]), one

checks as done in [38, section 2.1] that X := U(Λ+ V )U⊤ is a solution of the NIEP if and

only if (U, V ) ∈ Rn×n ×V is a solution of problem (3.36) on Rn×n × V with F and Q given

by (4.1).

In the numerical experiments, the nonnegative matrix is randomly generated via a uni-

form distribution in [0, 1] and then the target eigenvalues are calculated. One initial point

U0 is randomly generated and the other is given by V0 := W ⊙ V , where V is the Schur

decomposition of a real random matrix and W ∈ Rn×n is given by

Wij =

{
0, if (i, j) ∈ I,
1, otherwise.



Adaptive Linearized Proximal Algorithms and Applications 21

We use the conjugate gradient (CG) method to solve nonlinear equations associated to the

semismooth/smooth Newton method for solving the subproblem of Algorithm GCLP/GALP

(Algorithm 2). The stopping criterion is the residual of CG iteration is less than 10−(2p+4)

or the number of iterations is greater than 1000. The accuracy of each algorithm is evaluated

by the residual (RES) of the associated convex inclusion problem:

RES :=
√
∥[U∗(Λ+ V∗)U⊤

∗ ]−∥2F + ∥U∗U⊤
∗ − In×n∥2F ,

where U∗ and V∗ form the Schur decomposition of the solution estimated by the algorithm.

The algorithms are set to stop whenever RES<1e-4.

The first experiment aims to compare the numerical performance of Algorithms GCLP

and GALP on solving the NIEP. Table 1 shows the numerical results (averaged by 10 random

trials), in terms of CPU time (in seconds) and RES, of Algorithms GCLP and GALP when

p = 2 and p = 4, respectively. Figure 1(a) plots the variation of RES of Algorithms GCLP

and GALP respectively along with the number of outer iterations in a random trial when

p = 2 and n = 100. It is observed from Table 1 that Algorithm GALP performs better on

CPU time than Algorithm GCLP when p = 2; particularly when n ≥ 100, Algorithm GALP

only costs about half CPU time of Algorithm GCLP to approach a precise solution of the

NIEP. Algorithm GALP can obtain a solution of the NIEP when p = 4 while Algorithm

GCLP fails. This is consistent with the advantage of Algorithm GALP on convergence

theory that Algorithm GALP converges at a superlinear rate when p ≥ 1 (see Remark

5(c)) while Algorithm GCLP is guaranteed to converge only when 1 ≤ p ≤ 2 (see [19,

Theorem 12]). It is also observed from Figure 1(a) that Algorithm GALP converges faster

than Algorithm GCLP. This is consistent with the convergence theory that Algorithm GALP

owns a quadratic convergence rate (see Remark 5(c)), while Algorithm GCLP only converges

linearly (see [19, Theorem 12]) when p = 2.

Table 1 The numerical results of Algorithms GCLP and GALP for the NIEP (p = 2 or 4).

Algorithm GCLP GALP

p = 2 p = 4 p = 2 p = 4

n CPU time RES CPU time RES CPU time RES CPU time RES

10 0.0849 s 6.5e-5 N/A3 0.0639 s 3.8e-5 0.1601 s 4.2e-5

50 1.7763 s 2.9e-5 N/A 1.3076 s 4.7e-6 27.741 s 2.5e-5

100 17.422 s 1.1e-5 N/A 8.6562 s 8.0e-5 148.77 s 8.5e-5

150 70.795 s 7.8e-5 N/A 43.408 s 1.1e-6 459.96 s 6.3e-5

200 163.46 s 4.3e-5 N/A 88.427 s 5.9e-7 1260.5 s 1.1e-5

On the other hand, Table 2 and Figure 1(b) show the corresponding comparison results

of Algorithms GCLP and GALP when p = 1, for which we use the CVX4 instead of the

3 N/A means that the algorithm cannot approach the solution within the tenfold CPU time of that cost

by Algorithm GALP.
4 CVX, designed by Michael Grant and Stephen Boyd, is a MATLAB-based modeling system for convex

optimization. Detailed information is available from the website http://cvxr.com/cvx/.
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Fig. 1 The numerical results of Algorithms GCLP and GALP for the NIEP.

Table 2 The numerical results of Algorithms GCLP and GALP for the NIEP (p = 1).

Algorithm GCLP GALP

n CPU time RES CPU time RES

10 4.3162 s 2.7e-6 4.2342 s 2.7e-6

20 29.632 s 8.6e-6 27.872 s 8.5e-6

30 197.07 s 1.9e-6 191.65 s 1.9e-6

semismooth Newton method to solve the subproblem since the semismooth Newton method

only performs well when p ≥ 2 (see also the discussion in [19, Remark 31(a)]). While the

CVX is not efficient for solving large-scale problems, here we only consider the results when

n ≤ 30. From Table 2 and Figure 1(b), we know that Algorithms GCLP and GALP have

the similar performance on CPU time and RES, which is consistent with [19, Theorem 18]

and Theorem 3 that both Algorithms GCLP and GALP converge quadratically when p = 1.

(Much CPU time are consumed by the CVX in solving the subproblems.) Similar results

can be observed for all p ∈ [1, 2) since both Algorithms GCLP and GALP have superlinear

convergence rate in this case.

Table 3 The numerical results of the RINC and Algorithm GALP (p = 2) for the NIEP.

Eigenvalues dense matrices 1% sparse matrices

Algorithm RINC GALP RINC GALP

n
CPU

RES
CPU

RES
CPU

RES
CPU

RES
time time time time

10 0.01 s 9.5e-5 0.05 s 8.6e-6 1.22 s 9.9e-5 0.21 s 9.5e-7

20 0.03 s 5.9e-6 0.12 s 6.0e-6 21.7 s 9.7e-5 2.73 s 3.7e-7

50 0.21 s 4.5e-5 1.05 s 1.2e-7 N/A 5.76 s 7.7e-6

80 0.52 s 1.4e-6 4.71 s 5.3e-7 N/A 11.7 s 3.1e-5

100 1.02 s 2.4e-5 8.15 s 2.1e-7 N/A 18.4 s 1.6e-7

The Riemannian inexact Newton-CG method (RINC) [38] is one of the most popular and

efficient algorithms for solving the NIEP. The second experiment is to compare the numerical
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performance of the RINC and Algorithm GALP. Table 3 lists the numerical results (averaged

by 10 random trials) of the RINC and Algorithm GALP for the dense random matrices and

1% sparse random matrices, respectively. It is revealed from the first part of Table 3 that the

RINC is faster than Algorithm GALP in the dense matrix case; while it is illustrated from

the second part of Table 3 that Algorithm GALP is much more effective than the RINC

in the sparse matrix case. This is because the convergence theory of the RINC requires the

surjective assumption on the differential of a smooth mapping (associated to the NIEP) at

the accumulation point generated by the RINC (see [38, Assumption 1]), which is likely

to be satisfied in the dense matrix case but would fail in the sparse matrix case (see [38,

Remark 3.9]); while the assumption for the convergence theorem of Algorithm GALP is less

restrictive than the RINC. In a word, it is revealed from the numerical results that Algorithm

GALP is an efficient and robust algorithm for the NIEP.

4.2 Problem II: WSN localization

There is an increasing use of ad hoc wireless sensor networks for monitoring the environ-

mental information across an entire physical space. Typical networks of this type consist of

quantities of wireless sensors deployed in a geographical area which are able to communicate

neighbors within a limited radio range, and the WSN localization problem is to estimate the

positions of unknown sensors in a network by using the given incomplete pairwise distance

measurements; see [4,19,26] and references therein.

Let {x1, . . . , xn} ⊆ R2 and {a1, . . . , am} ⊆ R2 denote the sets of sensors and anchors (a

small quantity of sensors whose locations are known), respectively. Let Ne (resp. Me) consist

of all indices of pairs (i, j) (resp. (k, j)) where j = i+1, . . . , n (resp. j = 1, . . . , n) such that

the Euclidean distance measure dij between xi and xj (resp. d̄kj between ak and xj) is

within the radio range (denoted by R); otherwise, the distances between sensors or anchors

are larger than R. Then the WSN localization problem is to find {x1, . . . , xn} satisfying:

∥xi − xj∥2 = d2ij , ∥ak − xj∥2 = d̄2kj , (i, j) ∈ Ne, (k, j) ∈ Me,

∥xi − xj∥2 > R2, ∥ak − xj∥2 > R2, (i, j) /∈ Ne, (k, j) /∈ Me.
(4.2)

In general, the WSN localization problem (4.2) is NP-hard [33]. By neglecting all inequality

constraints in (4.2), many works focus on the following relaxation model

∥xi − xj∥2 = d2ij , ∥ak − xj∥2 = d̄2kj , (i, j) ∈ Ne, (k, j) ∈ Me; (4.3)

see [4,26] and references therein. Let x := (x1, ..., xn) ∈ R2×n and define

gi,j,1(x) := R2 − ∥xi − xj∥2, (i, j) /∈ Ne,

gi,j,2(x) := R2 − ∥ai − xj∥2, (i, j) /∈ Me,

ḡi,j,1(x) := ∥xi − xj∥2 − d2ij , (i, j) ∈ Ne,

ḡi,j,2(x) := ∥ai − xj∥2 − d̄2ij , (i, j) ∈ Me.
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Write

g(x) := ((gi,j,1(x))(i,j)/∈Ne
, (gi,j,2(x))(i,j)/∈Me

) and ḡ(x) := ((ḡi,j,1(x))(i,j)∈Ne
, (ḡi,j,2(x))(i,j)∈Me

).

Thus, the problems (4.2) and (4.3) are viewed as a convex inclusion problem (3.36) with F

and Q respectively given by

Q := R
1
2n(n−1)+mn−|Ne|−|Me|
− ×{0} ⊆ R

1
2n(n−1)+mn, F (x) := (g(x), ḡ(x)) for each x ∈ R2×n,

and

Q := {0} ⊆ R|Ne|+|Me|, F (x) := ḡ(x) for each x ∈ R2×n,

where |·| denotes the cardinality of a set. We apply Algorithm 2 to solve the convex inclusion

problems (4.2) and (4.3), which are abbreviated by Algorithm GALP and Algorithm GALP-

R, respectively.

In the numerical experiments, we set p = 2 (unless otherwise specified) and the sensors

and anchors are randomly placed via a uniform distribution in the unit square [−0.5, 0.5]2.

The performance of algorithms is evaluated by:

– (Accuracy) The root mean square distance (RMSD):

RMSD :=
1√
n

(
n∑

i=1

∥si − xi∥2
) 1

2

,

where {xi} and {si} denote the locations of the estimated sensors and experiment data,

respectively.

– (Speed) The CPU time cost by the algorithm, which is set to stop whenever RMSD<1e-

10.

– (Stability) The successful rate: the ratio of successful estimating, in which RMSD<1e-5.

In the following subsections, we first show the convergence rate of Algorithm GALP

compared with Algorithm GCLP and introduce an initialization strategy of multidimensional

scaling. Next, we compare the performance of Algorithm GALP with other approaches by

discussing the results when the scale of the network, the radio range and the number of

anchors change respectively.

4.2.1 The performance of Algorithm GALP

This subsection aims to show the numerical performance of Algorithm GALP on solving

the WSN localization problem and by comparing with Algorithm GCLP. In our numerical

results, Algorithm GALP can successfully localize the positions of the sensors in a WSN (of

200 sensors, 20 anchors, and the radio range being 0.3) within 1.5 seconds. For this WSN,

Algorithm GCLP can also achieve an accurate solution within 1.7 seconds, which is a little

slower than Algorithm GALP.

We conduct further experiments to compare the capability of Algorithms GCLP and

GALP to solve the WSN localization problem (of 200 sensors, 20 anchors, and the radio range
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being 0.3). Figure 2 plots the variation of RMSD of the estimation along with the number of

the outer iterations, and Table 4 lists the CPU time (in seconds) cost by Algorithms GCLP

and GALP with different initial points. Three observations are taken from Figure 2 and

Table 4: (i) Algorithms GCLP and GALP converge at a linear rate and a quadratic rate,

respectively, which is consistent with the convergence theory ([19, Theorem 12] and Remark

5(c)). (ii) Although Algorithm GALP owns a faster convergence rate than Algorithm GCLP,

their advantage on CPU time and the number of iterations is limited when starting from

a random initial point because the major cost of Algorithm GCLP/GALP is at the initial

stage of iterations. (iii) If a good initial point or a good (and fast) initialization strategy is

provided, Algorithm GALP will be much faster than Algorithm GCLP.
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Fig. 2 The numerical results of Algorithms GCLP and GALP with different initial points.

The multidimensional scaling (MDS) [21] is a popular and fast approach for the WSN

localization problem. When applying the MDS to solve problem (4.3) (of 200 sensors, 20

anchors, radio range = 0.3 and initial point: random), the result is:

RMSD = 1e-3, CPU time = 0.3 second.
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Table 4 The CPU time of Algorithm GCLP/GALP with different initial points for the WSN localization

problem (200 sensors, 20 anchors, radio range=0.3).

Algorithm GCLP GALP GCLP-R GALP-R

random initial points 1.7 s 1.5 s 0.6 s 0.5 s

sensor+0.5∗randn(2,n) 1.5 s 1.2 s 0.6 s 0.5 s

sensor+0.1∗randn(2,n) 1.0 s 0.6 s 0.4 s 0.2 s

sensor+0.01∗randn(2,n) 0.6 s 0.3 s 0.3 s 0.1 s

This shows that the MDS is a fast algorithm to estimate the locations of WSN but of low-

precision, which meets the demand for the fast initialization strategy for Algorithm GALP.

Hence, we introduce an MDS-GALP solver for the WSN localization problem, in which the

MDS is employed to provide an initial point and then Algorithm GALP is used to solve

problem (4.2) or (4.3) starting from this initial point.

4.2.2 Comparison among various algorithms

The purpose of this subsection is to compare the numerical performance of the MDS-GALP

solver with several effective algorithms for the WSN localization problem. The semidefinite

programming (SDP) is an effective approach to formulate the WSN localization problem [5].

One of the most popular and efficient tools for solving the WSN localization problem is the

semidefinite relaxation (SDR) technique that relaxes (4.3) into an SDP; see, e.g., [4,26]. In

order to facilitate the reading of the numerical results, the abbreviations of algorithms are

listed in Table 5.

Table 5 List of the algorithms for solving the WSN localization problem.

Abbreviations Algorithms

MDS MultiDimensional Scaling method (for solving (4.3)).

SDR5 SemiDefinite Relaxation method (for solving (4.3)).

GCLP [19, Algorithm 17] (for solving (4.2)).

GALP Algorithm 2 (for solving (4.2)).

GCLP-R Algorithm GCLP (for solving (4.3)).

GALP-R Algorithm GALP (for solving (4.3)).

MDS-GCLP Algorithm GCLP with initial points given by MDS (for solving (4.2)).

MDS-GALP Algorithm GALP with initial points given by MDS (for solving (4.2)).

MDS-GCLP-R Algorithm GCLP-R with initial points given by MDS (for solving (4.3)).

MDS-GALP-R Algorithm GALP-R with initial points given by MDS (for solving (4.3)).

In this subsection, we compare the MDS-GALP/GALP-R with several effective algo-

rithms, including the MDS and SDR, for the WSN localization problem. For iterative al-

gorithms, the stopping criteria are set as follows: the SDR’s are directly determined by the

5 It is solved by SNLSDP– a MATLAB software for the WSN localization problem whose code and

description are available in http://www.math.nus.edu.sg/∼mattohkc/SNLSDP.html.
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MATLAB software SNLSDP, and the (MDS based) GCLP and GALP’s are the same to

those set at the beginning of section 5 with RMSD<1e-10.

The first experiment is to compare the numerical performance of these algorithms on a

random WSN localization problem of 200 sensors, 20 anchors, and the radio range being 0.3.

The numerical results of these algorithms, in terms of RMSD, CPU time (in seconds) and

successful rate, with random initial points and initial points given by the MDS are listed in

Tables 6 and 7, respectively. In Table 7, the rows of “CPU time” and “CPU time (+MDS)”

record the CPU time cost by the GCLP/GALP and that plus the MDS initialization process,

respectively. The following observations are indicated from Tables 6 and 7:

(i) The GCLP and GALP achieve a more precise solution and consume less CPU time

than the SDR.

(ii) The GCLP and GALP consume more CPU time than the GCLP-R and GALP-R,

because the GCLP and GALP are designed to solve the full version of problem (4.2), whose

number of constraints is more than double that of the relaxation problem (4.3) solved by

the GCLP-R and GALP-R.

(iii) When random initial points are used, all these algorithms cannot obtain the robust

successful estimation within 2 seconds; while, the GCLP and GALP own more robust 3s-

successful6 rate than the GCLP-R and GALP-R, as well as the MDS and SDR. This is

benefited from that more constraints information is involved in the full version of problem

(4.2) than the relaxation problem (4.3).

(iv) When good initial points are given by the MDS, GCLP/GCLP-R and GALP/GALP-

R are faster than the ones with random initial points; particularly, the GALP/GALP-R are

much faster than the GCLP/GCLP-R.

(v) When good initial points are given by the MDS, GCLP/GCLP-R and GALP/GALP-

R all have robust 1s-successful rate. In a word, the MDS-GALP-R is the best one on accuracy,

speed and robustness.

Table 6 The numerical results of several algorithms for a WSN localization problem (200 sensors, 20

anchors, radio range=0.3 and initial points: random).

Algorithm MDS SDR GCLP GALP GCLP-R GALP-R

RMSD 1.0e-3 2.8e-8 1.8e-11 2.2e-13 1.6e-11 7.8e-13

CPU time 0.3 s 38.6 s 1.7 s 1.5 s 0.6 s 0.5 s

3s-S rate6 0% 0% 99% 99% 67% 68%

2s-S rate 0% 0% 64% 64% 67% 68%

The second experiment aims to show the capability of these algorithms to solve large-

scale WSN localization problems, in which the number of sensors is varied from 100 to

1000 and the number of anchors is set as 10% of sensors. Figure 3 shows the variation of

CPU time (averaged by 10 random trials) consumed by these algorithms along with the

6 The estimation is regarded as “ts-successful” if the estimated RMSD is less than 1e-5 within t seconds.

“ts-S rate” denotes the ratio of “ts-successful” estimating in 100 random trials.
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Table 7 The numerical results of several algorithms for a WSN localization problem (200 sensors, 20

anchors, radio range=0.3 and initial points: given by the MDS).

Algorithm GCLP GALP GCLP-R GALP-R

RMSD 1.7e-11 2.2e-13 1.4e-11 5.6e-13

CPU time 0.6 s 0.3 s 0.2 s 0.1 s

CPU time (+MDS) 0.9 s 0.6 s 0.5 s 0.4 s

1s-S rate 99% 99% 99% 99%

increasing number of sensors when random initial points and MDS initial points are used,

respectively. It is demonstrated by Figure 3(a) that the CPU time of the SDR grows rapidly

when the number of sensors increases and it is not available for the large-scale WSN lo-

calization problem. The GCLP/GALP is faster than the SDR, but slower than the MDS,

MDS-GCLP/GCLP-R and MDS-GALP/GALP-R along with the increasing number of sen-

sors. It is illustrated by Figure 3(b) that the MDS-GALP/GALP-R are much more efficient

than the MDS-GCLP/GCLP-R, respectively. This experiment reveals that the MDS-GALP

and MDS-GALP-R are suitable and efficient for solving large-scale WSN localization prob-

lems.
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Fig. 3 The CPU time of several algorithms along with the number of sensors (radio range=0.3).

The third experiment is to exhibit the numerical performance of these algorithms when

varying the circumstances (the radio range and the number of anchors) of the WSN of 200

sensors. Figure 4 shows the variation of RMSD (averaged by 10 random trials) of these

algorithms when increasing the radio range from 0.1 to 0.4 and varying the number of

anchors from 1 to 10, respectively. When the radio range or the number of anchors is too

small, there is no enough distance information in the WSN to make the estimation effective.

It is exhibited by Figure 4 that the GCLP and GALP can obtain an accurate estimation

with the smallest radio range (only R ≥ 0.15 is required) and the least number of anchors

requirement (only 2 anchors are needed).
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Fig. 4 The RMSD of several algorithms along with the radio range and the number of anchors (200 sensors

and initial points: random).

Finally, the conclusions of the numerical experiments on the WSN localization problem

can be summarized as follows:

(i) The GALP achieves a more precise solution and takes less CPU time than the SDR

and GCLP; particularly, when p = 2, the GALP owns a quadratic convergence rate that is

faster than the linear convergence rate of the GCLP.

(ii) The MDS provides a good (and fast) initialization strategy for the GALP. The

resulting the MDS-GALP outperforms the SDR and GCLP (based on MDS) on accuracy,

speed and robustness.

(iii) The MDS-GALP and MDS-GALP-R are suitable and efficient for solving large-scale

WSN localization problems with the least measurements.

4.3 The parameter setting of α in ALP-type algorithms

The major difference between CLP- and ALP-type algorithms is the adaptive stepsize, in

which α is a key parameter. It is clear from the theoretical results that the convergence

rate will be faster along with the increment of α, while the computational cost of subprob-

lems will be more expensive. Hence, the parameter α in ALP-type algorithms provides a

tradeoff between the convergence rate and computational cost of subproblems, and plays an

important role in the numerical performance of the ALP-type algorithms.

The above experiment is to illustrate the effect of α on the numerical performance of

Algorithm GALP in terms of CPU time to the NIEP when p = 2 and n = 200, and the WSN

localization problems of 200 sensors, 20 anchors and the radio range being 0.3 when random

initial points and MDS initial points are used, respectively. It is demonstrated by Figure 5

that the CPU time of Algorithm GALP decreases when α is small and increases when α

is large due to the tradeoff between the convergence rate and the solution of subproblem.

Thus, for the NIEP and the WSN localization problem with the given circumstance, we
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(b) WSNLP: random initial points
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Fig. 5 The CPU time of Algorithm GALP along with α for the NIEP (p = 2 and n = 200)/WSN localization

problem (WSNLP) (200 sensors, 20 anchors and radio range=0.3).

recommend to choose 0.5 ≤ α ≤ 0.8 and 0.5 ≤ α ≤ 1, respectively, for which the CPU time

is short.
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Appendix

Proposition A. Let c > 0, q > 1, and let X∗ ⊆ Rn be closed. Let {xk} ⊆ Rn be a sequence

satisfying

∥xk+1 − xk∥ ≤ cd(xk, X
∗) and d(xk+1, X

∗) ≤ cdq(xk, X
∗) for each k ≥ 0. (4.4)

If d(x0, X
∗) <

(
1
c

) 1
q−1 , then {xk} converges to a point x∗ ∈ X∗ at a rate of q.

Proof. Assume that d(x0, X
∗) <

(
1
c

) 1
q−1 , and set τ := cdq−1(x0, X

∗). Then τ < 1, and

cdq−1(xk, X
∗) ≤ τ and d(xk+1, X

∗) ≤ τd(xk, X
∗) for each k ≥ 0 (4.5)

because, by the second inequality of (4.4), d(xk, X
∗) ≤ c

qk−1
q−1 dq

k

(x0, X
∗) = c

qk−1
q−1

(
τ
c

) qk

q−1 ≤(
τ
c

) 1
q−1 for each k. In particular, we have that d(xk, X

∗) → 0.

Now fix k ≥ 1. We have from (4.5) that d(xk, X
∗) ≤ d(xk+1, X

∗) + ∥xk+1 − xk∥ ≤
τd(xk, X

∗) + ∥xk+1 − xk∥. It follows that d(xk, X
∗) ≤ 1

1−τ ∥xk+1 − xk∥. Thus, using (4.4),

we check that

∥xk+1 − xk∥ ≤ cd(xk, X
∗) ≤ c2dq(xk−1, X

∗) ≤ c2

(1− τ)q
∥xk − xk−1∥q.
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Set ck := c2

(1−τ)q ∥xk − xk−1∥q−1. Then

ck+1 ≤
(

c2

(1− τ)q

)q−1

∥xk − xk−1∥(q−1)2ck and ∥xk+1 − xk∥ ≤ ck∥xk − xk−1∥. (4.6)

Since d(xk, X
∗) → 0, it follows from (4.4) that ∥xk − xk−1∥ → 0, and so ck → 0. This,

together with (4.6) implies that {xk} is a Cauchy sequence and so converges to a point

x∗ ∈ X∗ (as X∗ is closed). Furthermore, without loss of generality, we may assume that

ck+1 ≤ ck ≤ 1
2 (see the first inequality in (4.6)). Write dk := xk+1 − xk for simplicity. Then

(4.6) implies that ∥dk+j∥ ≤ cjk∥dk∥ for each j ≥ 1. Therefore,
∑∞

j=1 ∥dk+j∥
∥dk∥ ≤ ck

1−ck
→ 0, and

so limk→∞
∥
∑∞

j=0 dk+j∥
∥dk∥ = 1, because

1−
∑∞

j=1 ∥dk+j∥
∥dk∥

≤
∥
∑∞

j=0 dk+j∥
∥dk∥

≤ 1 +

∑∞
j=1 ∥dk+j∥
∥dk∥

.

Consequently, we conclude that

lim sup
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥q

= lim sup
k→∞

∥
∑∞

j=1 dk+j∥
∥
∑∞

j=0 dk+j∥q
= lim sup

k→∞

∥dk+1∥
∥dk∥q

≤
(

1

1− τ

)q

c2,

which means that {xk} converges to x∗ at a rate of q.
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