
Supplementary material for Quasi-convex Feasibility Problems:
Subgradient Methods and Convergence Rates

Yaohua Hua, Gongnong Lia, Carisa Kwok Wai Yub,∗, Tsz Leung Yipc

aShenzhen Key Laboratory of Advanced Machine Learning and Applications, College of Mathematics and
Statistics, Shenzhen University, Shenzhen 518060, P. R. China

bDepartment of Mathematics, Statistics and Insurance, The Hang Seng University of Hong Kong, Shatin, Hong
Kong

cDepartment of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University,
Hung Hom, Hong Kong

A. Preliminary lemmas

We first recall an averaging scheme from (Kiwiel, 2004, Lemma 2.1) and a supermartingale

convergence theorem from (Bertsekas & Tsitsiklis, 1996, pp. 148), which are useful in conver-

gence analysis of subgradient methods.

Lemma A.1. Let {ak} be a sequence of scalars, and let {vk} be a sequence of nonnegative

scalars. Suppose that limk→∞
∑k

i=1 vi = ∞. Then it holds that

lim inf
k→∞

ak ≤ lim inf
k→∞

∑k
i=1 viai∑k
i=1 vi

≤ lim sup
k→∞

∑k
i=1 viai∑k
i=1 vi

≤ lim sup
k→∞

ak.

Theorem A.1. Let {Yk}, {Zk} and {Wk} be three sequences of random variables, and let {Fk}
be a sequence of sets of random variables such that Fk ⊆ Fk+1 for each k ∈ N. Suppose for each
k ∈ N that

(a) Yk, Zk and Wk are functions of nonnegative random variables in Fk;

(b) E {Yk+1 | Fk} ≤ Yk − Zk +Wk;

(c)
∑∞

k=1 Wk < ∞.

Then
∑∞

k=1 Zk < ∞ and {Yk} converges to a random variable with probability 1.
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B. Proof of Theorem 3.1

Proof. (i) By the basic inequality (3.9) in Lemma 3.2, Lemma A.1 is applicable (with (F+(xj))
1
β

and 1 in place of aj and vj) to concluding that

lim inf
k→∞

(
F+(xk)

) 1
β ≤ lim inf

k→∞

∑k
j=1 (F

+(xj))
1
β

k

≤ lim inf
k→∞

1

2vµ

(
L

α

) 1
β
(
∥x1 − x∥2

k
+ v2

)
=

v

2µ

(
L

α

) 1
β

.

Consequently, the conclusion (i) is obtained.

(ii) Proving by contradiction, we assume that F+(xk) >
L
α

(
v
2µ + δ

)β

for each 1 ≤ k ≤ Kc
m.

Then it follows from (3.9) in Lemma 3.2 (taking x := PS(xk)) that

d2(xk+1, S) < d2(xk, S)− 2vµδ for each 1 ≤ k ≤ Kc
m.

Summing the above inequality over k = 1, . . . ,Kc
m, we derive that

0 ≤ d2(xKc
m+1, S) < d2(x1, S)− 2Kc

mvµδ,

which contradicts with the definition of Kc
m. The proof is complete.

C. Proof of Theorem 3.3

Proof. (i) By the basic inequality (3.16) in Lemma 3.3, Lemma A.1 is applicable (with (F+(xsj))
1
β

and 1 in place of aj and vj) to concluding that

lim inf
k→∞

(
F+(xsk)

) 1
β ≤ lim inf

k→∞

∑k
j=1 (F

+(xsj))
1
β

k

≤ lim inf
k→∞

1

4vµ
(2L)

1
β

(
∥xs − x∥2

k
+ sv2(1 + 2µ)

)
=

sv(1 + 2µ)

4µ
(2L)

1
β .

Consequently, Theorem 3.3(i) is obtained.

(ii) Proving by contradiction, we assume that F+(xk) > 2L
(

sv(1+2µ)
4µ + δ

)β

for each 1 ≤ k ≤
Kc

c . Then it follows from (3.16) (taking x := PS(xsk)) that

d2(xs(k+1), S) < d2(xsk, S)− 4vµδ for each 1 ≤ k ≤ Kc
c

s
.

Summing the above inequality over k = 1, . . . ,
Kc

c

s , we derive that

0 ≤ d2(xKc
c+s, S) < d2(xs, S)− 4

Kc
c

s
vµδ,

which contradicts with the definition of Kc
c . The proof is complete.
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D. Proof of Theorem 3.4

Proof. Firstly, we claim that

d2(xs(k+1), S) ≤ d2(xsk, S)− 4vµ(2κL)−
1
β d

q
β (xsk, S) + sv2(1 + 2µ) (D.1)

for each k ∈ N. To this end, recall from (3.16) (taking x := PS(xsk)) that

d2(xs(k+1), S) ≤ d2(xsk, S)− 4vµ(2L)−
1
β
(
F+(xsk)

) 1
β + sv2(1 + 2µ). (D.2)

By the assumption of the Hölder-type error bound property, (3.10) holds for each xsk. This,
together with (D.2), yields (D.1), as desired.

(i) Suppose that q = 2β. Setting τ := (1− 4vµ(2κL)−
1
β )+ ∈ [0, 1) and by (D.1), we achieve

that
d2(xs(k+1), S) ≤ τd2(xsk, S) + sv2(1 + 2µ) for each k ∈ N.

Then we inductively obtain the conclusion (i).

(ii) Suppose that q > 2β and v < (s(1 + 2µ))
q−2β

2(β−q) (4µ)
β

β−q (2κL)
1

q−β

(
2β
q

) q
2(q−β)

. Then by

(D.1), Lemma 2.3(ii) is applicable (with d2(xsk, S),
q
2β − 1, 4vµ(2κL)−

1
β , sv2(1+ 2µ) in place of

uk, r, a, b) to obtaining the conclusion (ii). The proof is complete.

E. Proof of Theorem 3.5

Proof. (i) Fix δ > 0, and define a set Sδ ⊆ Rn by

Sδ := {x ∈ X : F+(x) < L
(mv

2
+ δ

)β

, ∀i ∈ I}.

Let yδ ∈ X be such that F+(yδ) = δβ (yδ is well-defined by the consistency of the QFP and the
continuity of each fi); hence yδ ∈ Sδ by construction. We define a new process {x̂k} by letting
x̂0 := x0 and

x̂k+1 :=

{
PX

(
x̂k − v

∑
i∈{ω̂k}∩I(x̂k)

ĝk,i

)
, if x̂k /∈ Sδ,

yδ, otherwise,

where ĝk,i ∈ ∂∗fi(x̂k)∩S. By comparing the above process with Algorithm 3.1, {x̂k} is identical
to {xk}, except that x̂k enters Sδ and then the process terminates with x̂k = yδ ∈ Sδ.

Assume that x̂k /∈ Sδ for each k ∈ N, and let F̂k := {x̂0, x̂1, . . . , x̂k} for each k ∈ N. It

says that F+(x̂k) ≥ L
(
mv
2 + δ

)β
, and then follows from (3.21) in Lemma 3.4 that the following

relation holds for any x ∈ S and k ∈ N:

E
{
∥x̂k+1 − x∥2 | F̂k

}
≤ ∥x̂k − x∥2 − 2v

m
δ.

Then it follows from Theorem A.1 (applied to ∥x̂k − x∥2, 2v
m δ, 0 in place of Yk, Zk, Wk)

that
∑∞

k=0
2v
m δ < ∞ with probability 1, that is impossible. Hence x̂k ∈ Sδ must occur for

infinitely many times; consequently, in the original process, it holds with probability 1 that

lim infk→∞ F+(xk) ≤ L
(
mv
2 + δ

)β
. Then the conclusion (i) is achieved by letting δ tend to 0.
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(ii) Proving by contradiction, we assume that E {F+(xk)} > L
(
mv
2 + δ

)β
for each 1 ≤ k ≤

Kc
s . Consequently, E

{
(F+(xk))

1
β

}
> L

1
β
(
mv
2 + δ

)
by the convexity of t

1
β on R+ (as β ≤ 1).

Taking the expectation on (3.21) (with x := PS(xk)), one has for each k = 1, . . . ,Kc
s that

E
{
d2(xk+1, S)

}
≤ E

{
d2(xk, S)

}
− 2v

m
L− 1

β E
{(

F+(xk)
) 1

β

}
+ v2

≤ E
{
d2(xk, S)

}
− 2v

m
δ.

Summing the above inequality over k = 1, . . . ,Kc
s , we derive that

0 ≤ E
{
d2(xk+1, S)

}
< d2(x1, S)−Kc

s

2v

m
δ,

which contradicts with the definition of Kc
s . The proof is complete.

F. Proof of Theorem 3.7

Proof. (i) Note by Lemma 3.5(ii) that {xk} is bounded, and thus, must have a cluster point,
denoted by x̄. It follows from (3.32) in Lemma 3.6 that

∞∑
k=1

(
F+(xk)

) 2
β ≤ 1

v(2− v)µ

(
L

α

) 2
β

d2(x1, S) < ∞.

Consequently, limk→∞ F+(xk) = 0, which shows that its cluster point x̄ ∈ S by the continuity
of each fi. Recall from Lemma 3.5(ii) that {∥xk − x̄∥} is monotonically decreasing. Hence {xk}
converges to this x̄ ∈ S, as desired.

(ii) Proving by contradiction, we assume that F+(xk) > δ for each 1 ≤ k ≤ Kd
m. Then it

follows from (3.32) that, for each 1 ≤ k ≤ Kd
m,

d2(xk+1, S) < d2(xk, S)− v(2− v)µ

(
αδ

L

) 2
β

.

Summing the above inequality over k = 1, . . . ,Kd
m, we derive that

0 ≤ d2(xKd
m+1, S) < d2(x1, S)−Kd

mv(2− v)µ

(
αδ

L

) 2
β

,

which contradicts with the definition of Kd
m. The proof is complete.

G. Proof of Theorem 3.9

Proof. (i) Note by Lemma 3.5(ii) that {xk} is bounded, and thus, must have a cluster point,
denoted by x̄. It follows from (3.36) that

∞∑
k=1

(
F+(xsk)

) 2
β ≤ 1 + 4s

2v(2− v)µ
(2L)

2
β d2(xs, S) < ∞.

This shows that limk→∞ F+(xsk) = 0, and thus, the cluster point x̄ of {xsk} falls in S by the
continuity of each fi. This, together with Lemma 3.5(ii), shows that {xk} converges to x̄ ∈ S.
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(ii) Proving by contradiction, we assume that F+(xk) > δ for each 1 ≤ k ≤ Kd
c . Then it

follows from (3.36) that, for each 1 ≤ k ≤ Kd
c

s ,

d2(xs(k+1), S) < d2(xsk, S)−
2v(2− v)µ

1 + 4s

(
δ

2L

) 2
β

.

Summing the above inequality over k = 1, . . . ,
Kd

c

s , we derive that

0 ≤ d2(xKd
c +s, S) < d2(xs, S)−

Kd
c

s

2v(2− v)µ

1 + 4s

(
δ

2L

) 2
β

,

which contradicts with the definition of Kd
c . The proof is complete.

H. Proof of Theorem 3.10

Proof. By the assumption of the Hölder-type error bound property, there exists κ > 0 such that
(3.10) holds for each xk. This, together with (3.36), yields

d2(xs(k+1), S) ≤ d2(xsk, S)− ρd
2q
β (xsk, S) for each k ∈ N,

where ρ := 2v(2−v)µ
1+4s

(
1

2κL

) 2
β . Consequently, there exists c ≥ 0 such that

d(xk, S) ≤

{
cτk, if q = β,

ck−
β

2(q−β) , if q > β,
(H.1)

with τ :=
√
1− ρ and by applying Lemma 2.3(i) (with d2(xk, S), ρ,

q
β − 1 in place of uk, a, r),

for each k ∈ N.
Fix l > k ∈ N. It follows from Lemma 3.5(ii) (taking x := PS(xk)) that

∥xl − xk∥ ≤ ∥xl − PS(xk)∥+ ∥xk − PS(xk)∥ ≤ 2∥xk − PS(xk)∥ = 2d(xk, S).

Hence, by the convergence of {xl} to x̄ ∈ S as shown in Theorem 3.7, we obtain

∥xk − x̄∥ = lim
l→∞

∥xl − xk∥ ≤ 2d(xk, S).

This, together with (H.1), implies the conclusions. The proof is complete.

I. Proof of Theorem 3.11

Proof. (i) By virtue of (3.41) in Lemma 3.8, Theorem A.1 is applicable to showing that {∥xk−x∥}
is convergent and

∑∞
k=1 (F

+(xk))
2
β < ∞ with probability 1. Hence limk→∞ F+(xk) = 0, and

the cluster point x̄ of {xk} falls in S, with probability 1. This, together with Lemma 3.5(ii),
shows that {xk} converges to x̄ ∈ S with probability 1.

(ii) Proving by contradiction, we assume that E {F+(xk)} > δ for each 1 ≤ k ≤ Kd
s . Conse-

quently, E
{
(F+(xk))

2
β

}
> δ

2
β by the convexity of t

2
β on R+ (as β ≤ 1). Taking the expectation

on (3.41) (with x := PS(xk)), one has for each 1 ≤ k ≤ Kd
s that

E
{
d2(xk+1, S)

}
≤ E

{
d2(xk, S)

}
− v(2− v)

m
L− 2

β E
{(

F+(xk)
) 2

β

}
≤ E

{
d2(xk, S)

}
− v(2− v)

m

(
δ

L

) 2
β

.
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Summing the above inequality over k = 1, . . . ,Kd
s , we derive that

0 ≤ E
{
d2(xk+1, S)

}
< d2(x1, S)−Kd

s

v(2− v)

m

(
δ

L

) 2
β

,

which contradicts with the definition of Kd
s . The proof is complete.
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