Supplementary material for Quasi-convex Feasibility Problems: Subgradient Methods and Convergence Rates

Yaohua Hu^{a}, Gongnong Li^{a}, Carisa Kwok Wai Yu ${ }^{\mathrm{b}, *}$, Tsz Leung Yip ${ }^{\text {c }}$
${ }^{a}$ Shenzhen Key Laboratory of Advanced Machine Learning and Applications, College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, P. R. China
${ }^{b}$ Department of Mathematics, Statistics and Insurance, The Hang Seng University of Hong Kong, Shatin, Hong Kong
${ }^{c}$ Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

A. Preliminary lemmas

We first recall an averaging scheme from (Kiwiel, 2004, Lemma 2.1) and a supermartingale convergence theorem from (Bertsekas \& Tsitsiklis, 1996, pp. 148), which are useful in convergence analysis of subgradient methods.

Lemma A.1. Let $\left\{a_{k}\right\}$ be a sequence of scalars, and let $\left\{v_{k}\right\}$ be a sequence of nonnegative scalars. Suppose that $\lim _{k \rightarrow \infty} \sum_{i=1}^{k} v_{i}=\infty$. Then it holds that

$$
\liminf _{k \rightarrow \infty} a_{k} \leq \liminf _{k \rightarrow \infty} \frac{\sum_{i=1}^{k} v_{i} a_{i}}{\sum_{i=1}^{k} v_{i}} \leq \limsup _{k \rightarrow \infty} \frac{\sum_{i=1}^{k} v_{i} a_{i}}{\sum_{i=1}^{k} v_{i}} \leq \limsup _{k \rightarrow \infty} a_{k} .
$$

Theorem A.1. Let $\left\{Y_{k}\right\},\left\{Z_{k}\right\}$ and $\left\{W_{k}\right\}$ be three sequences of random variables, and let $\left\{\mathcal{F}_{k}\right\}$ be a sequence of sets of random variables such that $\mathcal{F}_{k} \subseteq \mathcal{F}_{k+1}$ for each $k \in \mathbb{N}$. Suppose for each $k \in \mathbb{N}$ that
(a) Y_{k}, Z_{k} and W_{k} are functions of nonnegative random variables in \mathcal{F}_{k};
(b) $\mathbb{E}\left\{Y_{k+1} \mid \mathcal{F}_{k}\right\} \leq Y_{k}-Z_{k}+W_{k}$;
(c) $\sum_{k=1}^{\infty} W_{k}<\infty$.

Then $\sum_{k=1}^{\infty} Z_{k}<\infty$ and $\left\{Y_{k}\right\}$ converges to a random variable with probability 1.

[^0]
B. Proof of Theorem 3.1

Proof. (i) By the basic inequality (3.9) in Lemma 3.2, Lemma A. 1 is applicable (with $\left(F^{+}\left(x_{j}\right)\right)^{\frac{1}{\beta}}$ and 1 in place of a_{j} and v_{j}) to concluding that

$$
\begin{aligned}
\liminf _{k \rightarrow \infty}\left(F^{+}\left(x_{k}\right)\right)^{\frac{1}{\beta}} & \leq \liminf _{k \rightarrow \infty} \frac{\sum_{j=1}^{k}\left(F^{+}\left(x_{j}\right)\right)^{\frac{1}{\beta}}}{k} \\
& \leq \liminf _{k \rightarrow \infty} \frac{1}{2 v \mu}\left(\frac{L}{\alpha}\right)^{\frac{1}{\beta}}\left(\frac{\left\|x_{1}-x\right\|^{2}}{k}+v^{2}\right) \\
& =\frac{v}{2 \mu}\left(\frac{L}{\alpha}\right)^{\frac{1}{\beta}}
\end{aligned}
$$

Consequently, the conclusion (i) is obtained.
(ii) Proving by contradiction, we assume that $F^{+}\left(x_{k}\right)>\frac{L}{\alpha}\left(\frac{v}{2 \mu}+\delta\right)^{\beta}$ for each $1 \leq k \leq K_{\mathrm{m}}^{\mathrm{c}}$. Then it follows from (3.9) in Lemma 3.2 (taking $\left.x:=\mathrm{P}_{S}\left(x_{k}\right)\right)$ that

$$
\mathrm{d}^{2}\left(x_{k+1}, S\right)<\mathrm{d}^{2}\left(x_{k}, S\right)-2 v \mu \delta \quad \text { for each } 1 \leq k \leq K_{\mathrm{m}}^{\mathrm{c}}
$$

Summing the above inequality over $k=1, \ldots, K_{\mathrm{m}}^{\mathrm{c}}$, we derive that

$$
0 \leq \mathrm{d}^{2}\left(x_{K_{\mathrm{m}}^{\mathrm{c}}+1}, S\right)<\mathrm{d}^{2}\left(x_{1}, S\right)-2 K_{\mathrm{m}}^{\mathrm{c}} v \mu \delta
$$

which contradicts with the definition of $K_{\mathrm{m}}^{\mathrm{c}}$. The proof is complete.

C. Proof of Theorem 3.3

Proof. (i) By the basic inequality (3.16) in Lemma 3.3, Lemma A. 1 is applicable (with $\left(F^{+}\left(x_{s j}\right)\right)^{\frac{1}{\beta}}$ and 1 in place of a_{j} and v_{j}) to concluding that

$$
\begin{aligned}
\liminf _{k \rightarrow \infty}\left(F^{+}\left(x_{s k}\right)\right)^{\frac{1}{\beta}} & \leq \liminf _{k \rightarrow \infty} \frac{\sum_{j=1}^{k}\left(F^{+}\left(x_{s j}\right)\right)^{\frac{1}{\beta}}}{k} \\
& \leq \liminf _{k \rightarrow \infty} \frac{1}{4 v \mu}(2 L)^{\frac{1}{\beta}}\left(\frac{\left\|x_{s}-x\right\|^{2}}{k}+s v^{2}(1+2 \mu)\right) \\
& =\frac{s v(1+2 \mu)}{4 \mu}(2 L)^{\frac{1}{\beta}}
\end{aligned}
$$

Consequently, Theorem 3.3(i) is obtained.
(ii) Proving by contradiction, we assume that $F^{+}\left(x_{k}\right)>2 L\left(\frac{s v(1+2 \mu)}{4 \mu}+\delta\right)^{\beta}$ for each $1 \leq k \leq$ $K_{\mathrm{c}}^{\mathrm{c}}$. Then it follows from (3.16) (taking $x:=\mathrm{P}_{S}\left(x_{s k}\right)$) that

$$
\mathrm{d}^{2}\left(x_{s(k+1)}, S\right)<\mathrm{d}^{2}\left(x_{s k}, S\right)-4 v \mu \delta \quad \text { for each } 1 \leq k \leq \frac{K_{\mathrm{c}}^{\mathrm{c}}}{s}
$$

Summing the above inequality over $k=1, \ldots, \frac{K_{c}^{c}}{s}$, we derive that

$$
0 \leq \mathrm{d}^{2}\left(x_{K_{\mathrm{c}}^{\mathrm{c}}+s}, S\right)<\mathrm{d}^{2}\left(x_{s}, S\right)-4 \frac{K_{\mathrm{c}}^{\mathrm{c}}}{s} v \mu \delta
$$

which contradicts with the definition of $K_{\mathrm{c}}^{\mathrm{c}}$. The proof is complete.

D. Proof of Theorem 3.4

Proof. Firstly, we claim that

$$
\begin{equation*}
\mathrm{d}^{2}\left(x_{s(k+1)}, S\right) \leq \mathrm{d}^{2}\left(x_{s k}, S\right)-4 v \mu(2 \kappa L)^{-\frac{1}{\beta}} \mathrm{~d}^{\frac{q}{\beta}}\left(x_{s k}, S\right)+s v^{2}(1+2 \mu) \tag{D.1}
\end{equation*}
$$

for each $k \in \mathbb{N}$. To this end, recall from (3.16) (taking $x:=\mathrm{P}_{S}\left(x_{s k}\right)$) that

$$
\begin{equation*}
\mathrm{d}^{2}\left(x_{s(k+1)}, S\right) \leq \mathrm{d}^{2}\left(x_{s k}, S\right)-4 v \mu(2 L)^{-\frac{1}{\beta}}\left(F^{+}\left(x_{s k}\right)\right)^{\frac{1}{\beta}}+s v^{2}(1+2 \mu) \tag{D.2}
\end{equation*}
$$

By the assumption of the Hölder-type error bound property, (3.10) holds for each $x_{s k}$. This, together with (D.2), yields (D.1), as desired.
(i) Suppose that $q=2 \beta$. Setting $\tau:=\left(1-4 v \mu(2 \kappa L)^{-\frac{1}{\beta}}\right)_{+} \in[0,1)$ and by (D.1), we achieve that

$$
\mathrm{d}^{2}\left(x_{s(k+1)}, S\right) \leq \tau \mathrm{d}^{2}\left(x_{s k}, S\right)+s v^{2}(1+2 \mu) \quad \text { for each } k \in \mathbb{N} .
$$

Then we inductively obtain the conclusion (i).
(ii) Suppose that $q>2 \beta$ and $v<(s(1+2 \mu))^{\frac{q-2 \beta}{2(\beta-q)}}(4 \mu)^{\frac{\beta}{\beta-q}}(2 \kappa L)^{\frac{1}{q-\beta}}\left(\frac{2 \beta}{q}\right)^{\frac{q}{2(q-\beta)}}$. Then by (D.1), Lemma 2.3(ii) is applicable (with $\mathrm{d}^{2}\left(x_{s k}, S\right), \frac{q}{2 \beta}-1,4 v \mu(2 \kappa L)^{-\frac{1}{\beta}}, s v^{2}(1+2 \mu)$ in place of $\left.u_{k}, r, a, b\right)$ to obtaining the conclusion (ii). The proof is complete.

E. Proof of Theorem 3.5

Proof. (i) Fix $\delta>0$, and define a set $S_{\delta} \subseteq \mathbb{R}^{n}$ by

$$
S_{\delta}:=\left\{x \in X: F^{+}(x)<L\left(\frac{m v}{2}+\delta\right)^{\beta}, \forall i \in I\right\}
$$

Let $y_{\delta} \in X$ be such that $F^{+}\left(y_{\delta}\right)=\delta^{\beta}$ (y_{δ} is well-defined by the consistency of the QFP and the continuity of each f_{i}; hence $y_{\delta} \in S_{\delta}$ by construction. We define a new process $\left\{\hat{x}_{k}\right\}$ by letting $\hat{x}_{0}:=x_{0}$ and

$$
\hat{x}_{k+1}:=\left\{\begin{array}{cl}
\mathrm{P}_{X}\left(\hat{x}_{k}-v \sum_{i \in\left\{\hat{\omega}_{k}\right\} \cap I\left(\hat{x}_{k}\right)} \hat{g}_{k, i}\right), & \text { if } \hat{x}_{k} \notin S_{\delta} \\
y_{\delta}, & \text { otherwise }
\end{array}\right.
$$

where $\hat{g}_{k, i} \in \partial^{*} f_{i}\left(\hat{x}_{k}\right) \cap \mathbb{S}$. By comparing the above process with Algorithm 3.1, $\left\{\hat{x}_{k}\right\}$ is identical to $\left\{x_{k}\right\}$, except that \hat{x}_{k} enters S_{δ} and then the process terminates with $\hat{x}_{k}=y_{\delta} \in S_{\delta}$.

Assume that $\hat{x}_{k} \notin S_{\delta}$ for each $k \in \mathbb{N}$, and let $\hat{\mathcal{F}}_{k}:=\left\{\hat{x}_{0}, \hat{x}_{1}, \ldots, \hat{x}_{k}\right\}$ for each $k \in \mathbb{N}$. It says that $F^{+}\left(\hat{x}_{k}\right) \geq L\left(\frac{m v}{2}+\delta\right)^{\beta}$, and then follows from (3.21) in Lemma 3.4 that the following relation holds for any $x \in S$ and $k \in \mathbb{N}$:

$$
\mathbb{E}\left\{\left\|\hat{x}_{k+1}-x\right\|^{2} \mid \hat{\mathcal{F}}_{k}\right\} \leq\left\|\hat{x}_{k}-x\right\|^{2}-\frac{2 v}{m} \delta .
$$

Then it follows from Theorem A. 1 (applied to $\left\|\hat{x}_{k}-x\right\|^{2}, \frac{2 v}{m} \delta, 0$ in place of Y_{k}, Z_{k}, W_{k}) that $\sum_{k=0}^{\infty} \frac{2 v}{m} \delta<\infty$ with probability 1 , that is impossible. Hence $\hat{x}_{k} \in S_{\delta}$ must occur for infinitely many times; consequently, in the original process, it holds with probability 1 that $\liminf _{k \rightarrow \infty} F^{+}\left(x_{k}\right) \leq L\left(\frac{m v}{2}+\delta\right)^{\beta}$. Then the conclusion (i) is achieved by letting δ tend to 0 .
(ii) Proving by contradiction, we assume that $\mathbb{E}\left\{F^{+}\left(x_{k}\right)\right\}>L\left(\frac{m v}{2}+\delta\right)^{\beta}$ for each $1 \leq k \leq$ $K_{\mathrm{s}}^{\mathrm{c}}$. Consequently, $\mathbb{E}\left\{\left(F^{+}\left(x_{k}\right)\right)^{\frac{1}{\beta}}\right\}>L^{\frac{1}{\beta}}\left(\frac{m v}{2}+\delta\right)$ by the convexity of $t^{\frac{1}{\beta}}$ on $\mathbb{R}_{+}($as $\beta \leq 1)$. Taking the expectation on (3.21) (with $x:=\mathrm{P}_{S}\left(x_{k}\right)$), one has for each $k=1, \ldots, K_{\mathrm{s}}^{\mathrm{c}}$ that

$$
\begin{aligned}
\mathbb{E}\left\{\mathrm{d}^{2}\left(x_{k+1}, S\right)\right\} & \leq \mathbb{E}\left\{\mathrm{d}^{2}\left(x_{k}, S\right)\right\}-\frac{2 v}{m} L^{-\frac{1}{\beta}} \mathbb{E}\left\{\left(F^{+}\left(x_{k}\right)\right)^{\frac{1}{\beta}}\right\}+v^{2} \\
& \leq \mathbb{E}\left\{\mathrm{d}^{2}\left(x_{k}, S\right)\right\}-\frac{2 v}{m} \delta
\end{aligned}
$$

Summing the above inequality over $k=1, \ldots, K_{\mathrm{s}}^{\mathrm{c}}$, we derive that

$$
0 \leq \mathbb{E}\left\{\mathrm{d}^{2}\left(x_{k+1}, S\right)\right\}<\mathrm{d}^{2}\left(x_{1}, S\right)-K_{\mathrm{s}}^{\mathrm{c}} \frac{2 v}{m} \delta
$$

which contradicts with the definition of $K_{\mathrm{s}}^{\mathrm{c}}$. The proof is complete.

F. Proof of Theorem 3.7

Proof. (i) Note by Lemma 3.5(ii) that $\left\{x_{k}\right\}$ is bounded, and thus, must have a cluster point, denoted by \bar{x}. It follows from (3.32) in Lemma 3.6 that

$$
\sum_{k=1}^{\infty}\left(F^{+}\left(x_{k}\right)\right)^{\frac{2}{\beta}} \leq \frac{1}{\underline{v}(2-\bar{v}) \mu}\left(\frac{L}{\alpha}\right)^{\frac{2}{\beta}} \mathrm{~d}^{2}\left(x_{1}, S\right)<\infty .
$$

Consequently, $\lim _{k \rightarrow \infty} F^{+}\left(x_{k}\right)=0$, which shows that its cluster point $\bar{x} \in S$ by the continuity of each f_{i}. Recall from Lemma 3.5(ii) that $\left\{\left\|x_{k}-\bar{x}\right\|\right\}$ is monotonically decreasing. Hence $\left\{x_{k}\right\}$ converges to this $\bar{x} \in S$, as desired.
(ii) Proving by contradiction, we assume that $F^{+}\left(x_{k}\right)>\delta$ for each $1 \leq k \leq K_{\mathrm{m}}^{\mathrm{d}}$. Then it follows from (3.32) that, for each $1 \leq k \leq K_{\mathrm{m}}^{\mathrm{d}}$,

$$
\mathrm{d}^{2}\left(x_{k+1}, S\right)<\mathrm{d}^{2}\left(x_{k}, S\right)-\underline{v}(2-\bar{v}) \mu\left(\frac{\alpha \delta}{L}\right)^{\frac{2}{\beta}}
$$

Summing the above inequality over $k=1, \ldots, K_{\mathrm{m}}^{\mathrm{d}}$, we derive that

$$
0 \leq \mathrm{d}^{2}\left(x_{K_{\mathrm{m}}^{\mathrm{d}}+1}, S\right)<\mathrm{d}^{2}\left(x_{1}, S\right)-K_{\mathrm{m}}^{\mathrm{d}} \underline{v}(2-\bar{v}) \mu\left(\frac{\alpha \delta}{L}\right)^{\frac{2}{\beta}}
$$

which contradicts with the definition of $K_{\mathrm{m}}^{\mathrm{d}}$. The proof is complete.

G. Proof of Theorem 3.9

Proof. (i) Note by Lemma 3.5(ii) that $\left\{x_{k}\right\}$ is bounded, and thus, must have a cluster point, denoted by \bar{x}. It follows from (3.36) that

$$
\sum_{k=1}^{\infty}\left(F^{+}\left(x_{s k}\right)\right)^{\frac{2}{\beta}} \leq \frac{1+4 s}{2 \underline{v}(2-\bar{v}) \mu}(2 L)^{\frac{2}{\beta}} \mathrm{~d}^{2}\left(x_{s}, S\right)<\infty
$$

This shows that $\lim _{k \rightarrow \infty} F^{+}\left(x_{s k}\right)=0$, and thus, the cluster point \bar{x} of $\left\{x_{s k}\right\}$ falls in S by the continuity of each f_{i}. This, together with Lemma 3.5(ii), shows that $\left\{x_{k}\right\}$ converges to $\bar{x} \in S$.
(ii) Proving by contradiction, we assume that $F^{+}\left(x_{k}\right)>\delta$ for each $1 \leq k \leq K_{\mathrm{c}}^{\mathrm{d}}$. Then it follows from (3.36) that, for each $1 \leq k \leq \frac{K_{c}^{\mathrm{d}}}{s}$,

$$
\mathrm{d}^{2}\left(x_{s(k+1)}, S\right)<\mathrm{d}^{2}\left(x_{s k}, S\right)-\frac{2 \underline{v}(2-\bar{v}) \mu}{1+4 s}\left(\frac{\delta}{2 L}\right)^{\frac{2}{\beta}}
$$

Summing the above inequality over $k=1, \ldots, \frac{K_{\mathrm{c}}^{\mathrm{d}}}{s}$, we derive that

$$
0 \leq \mathrm{d}^{2}\left(x_{K_{\mathrm{c}}^{\mathrm{d}}+s}, S\right)<\mathrm{d}^{2}\left(x_{s}, S\right)-\frac{K_{\mathrm{c}}^{\mathrm{d}}}{s} \frac{2 \underline{v}(2-\bar{v}) \mu}{1+4 s}\left(\frac{\delta}{2 L}\right)^{\frac{2}{\beta}}
$$

which contradicts with the definition of $K_{\mathrm{c}}^{\mathrm{d}}$. The proof is complete.

H. Proof of Theorem 3.10

Proof. By the assumption of the Hölder-type error bound property, there exists $\kappa>0$ such that (3.10) holds for each x_{k}. This, together with (3.36), yields

$$
\mathrm{d}^{2}\left(x_{s(k+1)}, S\right) \leq \mathrm{d}^{2}\left(x_{s k}, S\right)-\rho \mathrm{d}^{\frac{2 q}{\beta}}\left(x_{s k}, S\right) \quad \text { for each } k \in \mathbb{N},
$$

where $\rho:=\frac{2 \underline{v}(2-\bar{v}) \mu}{1+4 s}\left(\frac{1}{2 \kappa L}\right)^{\frac{2}{\beta}}$. Consequently, there exists $c \geq 0$ such that

$$
\mathrm{d}\left(x_{k}, S\right) \leq \begin{cases}c \tau^{k}, & \text { if } q=\beta \tag{H.1}\\ c k^{-\frac{\beta}{2(q-\beta)}}, & \text { if } q>\beta\end{cases}
$$

with $\tau:=\sqrt{1-\rho}$ and by applying Lemma 2.3(i) (with $\mathrm{d}^{2}\left(x_{k}, S\right), \rho, \frac{q}{\beta}-1$ in place of $\left.u_{k}, a, r\right)$, for each $k \in \mathbb{N}$.

Fix $l>k \in \mathbb{N}$. It follows from Lemma 3.5(ii) (taking $x:=\mathrm{P}_{S}\left(x_{k}\right)$) that

$$
\left\|x_{l}-x_{k}\right\| \leq\left\|x_{l}-\mathrm{P}_{S}\left(x_{k}\right)\right\|+\left\|x_{k}-\mathrm{P}_{S}\left(x_{k}\right)\right\| \leq 2\left\|x_{k}-\mathrm{P}_{S}\left(x_{k}\right)\right\|=2 \mathrm{~d}\left(x_{k}, S\right)
$$

Hence, by the convergence of $\left\{x_{l}\right\}$ to $\bar{x} \in S$ as shown in Theorem 3.7, we obtain

$$
\left\|x_{k}-\bar{x}\right\|=\lim _{l \rightarrow \infty}\left\|x_{l}-x_{k}\right\| \leq 2 \mathrm{~d}\left(x_{k}, S\right)
$$

This, together with (H.1), implies the conclusions. The proof is complete.

I. Proof of Theorem 3.11

Proof. (i) By virtue of (3.41) in Lemma 3.8, Theorem A. 1 is applicable to showing that $\left\{\left\|x_{k}-x\right\|\right\}$ is convergent and $\sum_{k=1}^{\infty}\left(F^{+}\left(x_{k}\right)\right)^{\frac{2}{\beta}}<\infty$ with probability 1. Hence $\lim _{k \rightarrow \infty} F^{+}\left(x_{k}\right)=0$, and the cluster point \bar{x} of $\left\{x_{k}\right\}$ falls in S, with probability 1 . This, together with Lemma 3.5(ii), shows that $\left\{x_{k}\right\}$ converges to $\bar{x} \in S$ with probability 1 .
(ii) Proving by contradiction, we assume that $\mathbb{E}\left\{F^{+}\left(x_{k}\right)\right\}>\delta$ for each $1 \leq k \leq K_{\mathrm{s}}^{\mathrm{d}}$. Consequently, $\mathbb{E}\left\{\left(F^{+}\left(x_{k}\right)\right)^{\frac{2}{\beta}}\right\}>\delta^{\frac{2}{\beta}}$ by the convexity of $t^{\frac{2}{\beta}}$ on $\mathbb{R}_{+}($as $\beta \leq 1)$. Taking the expectation on (3.41) (with $x:=\mathrm{P}_{S}\left(x_{k}\right)$), one has for each $1 \leq k \leq K_{\mathrm{s}}^{\mathrm{d}}$ that

$$
\begin{aligned}
\mathbb{E}\left\{\mathrm{d}^{2}\left(x_{k+1}, S\right)\right\} & \leq \mathbb{E}\left\{\mathrm{d}^{2}\left(x_{k}, S\right)\right\}-\frac{v}{m}(2-\bar{v}) \\
& L^{-\frac{2}{\beta}} \mathbb{E}\left\{\left(F^{+}\left(x_{k}\right)\right)^{\frac{2}{\beta}}\right\} \\
& \leq \mathbb{E}\left\{\mathrm{d}^{2}\left(x_{k}, S\right)\right\}-\frac{v}{m}(2-\bar{v}) \\
m & \left.\frac{\delta}{L}\right)^{\frac{2}{\beta}}
\end{aligned}
$$

Summing the above inequality over $k=1, \ldots, K_{\mathrm{s}}^{\mathrm{d}}$, we derive that

$$
0 \leq \mathbb{E}\left\{\mathrm{d}^{2}\left(x_{k+1}, S\right)\right\}<\mathrm{d}^{2}\left(x_{1}, S\right)-K_{\mathrm{s}}^{\mathrm{d}} \frac{\underline{v}(2-\bar{v})}{m}\left(\frac{\delta}{L}\right)^{\frac{2}{\beta}}
$$

which contradicts with the definition of $K_{\mathrm{s}}^{\mathrm{d}}$. The proof is complete.

References

Bertsekas, D. P., \& Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Belmont, MA: Athena Scientific.

Kiwiel, K. C. (2004). Convergence of approximate and incremental subgradient methods for convex optimization. SIAM Journal on Optimization, 14, 807-840.

[^0]: *Corresponding author
 Email addresses: mayhhu@szu.edu.cn (Yaohua Hu), gnli@szu.edu.cn (Gongnong Li), carisayu@hsu.edu.hk (Carisa Kwok Wai Yu), t.l.yip@polyu.edu.hk (Tsz Leung Yip)

