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Abstract The split feasibility problem is at the core of the modeling of many inverse prob-

lems in various areas, and the quasi-convex function usually provides a precise representation

of reality in many fields such as economics, finance and management science. In this paper, we

consider the multiple-sets split quasi-convex feasibility problem (MSSQFP), which is to find

a point such that itself and its image under a linear transformation fall within two families

of sublevel sets of quasi-convex functions in the space and the image space, respectively. A

unified framework of adaptive subgradient methods with general control schemes is proposed

to solve the MSSQFP. This paper is contributed to establish the quantitative convergence

theory, including the global convergence, the iteration complexity and the convergence rates,

of adaptive subgradient methods with several general control schemes, including the α-most

violated constraints control, the s-intermittent control and the stochastic control. An in-

teresting finding is disclosed by the iteration complexity results that the stochastic control

enjoys both advantages of low computational cost requirement and low iteration complexity.

More importantly, we introduce a notion of the Hölder-type bounded error bound property

for the MSSQFP, and use it to establish the linear/sublinear convergence rates for adaptive

subgradient methods to a feasible solution of the MSSQFP.
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1 Introduction

Let A : Rn → Rm be a linear operator, C and Q be nonempty closed and convex sets in Rn

and Rm, and let f and g be convex and continuous functions on Rn and Rm, respectively.

The split feasibility problem (SFP) is to find a point x ∈ Rn such that

f(x) ≤ 0 and g(Ax) ≤ 0. (1.1)

Problem (1.1) includes the following widely studied SFP

x ∈ C and Ax ∈ Q. (1.2)

as a special case by taking f(·) := dC(·) and g(·) := dQ(·), the distance functions to C and Q.

The SFP was firstly introduced by Censor and Elfving [10] so as to solve the phase retrieval

problems. It provides a unified framework for many inverse problems in mathematics and

physical sciences, and has been extensively applied in various areas, such as signal processing

[9], image reconstruction [30], intensity-modulated radiation therapy [11], and systems biology

[18, 39]. Motivated by its vast applications, various numerical algorithms have been developed

to solve the SFP; the most popular and practical algorithms are the subgradient methods for

problem (1.1) [30, 38] and the CQ algorithms for problem (1.2) [8, 39].

To measure the separable structure involved in the SFP precisely, the multiple-sets split

feasibility problem (MSSFP) was introduced by Censor et al. [11], which is a generalization

of the SFP with a series of convex and continuous functions {fi} and {gj} or with a series of

closed and convex sets {Ci} and {Qi}. Several works have been devoted to the development

of projection-type algorithms, the extensions of CQ algorithm, for solving the MSSFP with

different stepsize (such as constant and adaptive stepsizes) and different control schemes (such

as cyclic and parallel controls); see e.g., [11, 47, 43, 46, 42, 40].

Most literature mentioned above considered the SFP (1.1) with convex component func-

tions; however, the convex function is restrictive to many real-life problems encountered in

economics, finance and management science. In contrast, the quasi-convex function usual-

ly provides a much more accurate representation of reality in economics and finance and

still possesses certain desirable properties of the convex function; e.g., Sharpe ratio in port-

folio selection and Cobb-Douglas production efficiency in management. In recent decades,

much attention has been drawn to quasi-convex optimization; see [14, 16, 36, 23, 20, 27]

and references therein. In the scenario of the SFP (1.1), [34] considered the split quasi-

convex feasibility problem (SQFP), where the involved functions f and g are quasi-convex

and continuous. They also proposed an adaptive subgradient method to solve the SQFP and

established its global convergence property.
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Besides the global convergence property, the establishment of convergence rate is impor-

tant in guaranteeing the numerical performance of relevant algorithms. For the SFP (1.2),

the linear convergence rate of CQ algorithm (with varying and adaptive stepsizes) was estab-

lished under an assumption of bounded linear regularity property [39]. For the quasi-convex

feasibility problem, i.e., (1.1) with A being identity matrix, the linear/sublinear convergence

rates of subgradient methods (with constant and adaptive stepsizes) were explored under an

assumption of Hölder-type error bound property [20]. However, to the best of our knowledge,

there is limited study devoted to establishing the convergence rate of subgradient methods

for solving the SQFP.

In the present paper, we consider the multiple-sets split quasi-convex feasibility problem

(MSSQFP): Find a point x ∈ Rn such that

fi(x) ≤ 0, ∀i ∈ I, and gj(Ax) ≤ 0, ∀j ∈ J,

where I and J are finite index sets, and {fi : i ∈ I} and {gi : i ∈ J} be two families of quasi-

convex and continuous functions. Inspired by the ideas in [20, 34], we propose the adaptive

subgradient methods for solving the MSSQFP in a unified framework (see Algorithm 3.1),

which covers most types of control schemes discussed in the literature. In particular, the

α-most violated constraints control, the s-intermittent control and the stochastic control are

considered in this paper.

The main contribution of the present paper is to establish the quantitative convergence

theory, including the global convergence, the iteration complexity and the convergence rate, of

adaptive subgradient methods with several general control schemes for solving the MSSQFP.

In particular, we first establish the global convergence theorem of adaptive subgradient meth-

ods to a feasible solution of the MSSQFP; see Theorems 4.1 and 4.4. Furthermore, we derive

its (worst-case) iteration complexity to obtain a feasible solution; see Theorems 4.2 and 4.5.

More importantly, we introduce a notion of the Hölder-type bounded error bound property

for the MSSQFP and use it to explore the linear/sublinear convergence rates of adaptive

subgradient methods; see Theorems 4.3 and 4.6. The established theorems not only extend

the subgradient methods in [34, 38] to the scenario of multiple-sets context and quasi-convex

system, but also improve the global convergence results to the quantitative complexity and

linear convergence rate. As far as we know, the establishment of iteration complexity and

convergence rates of adaptive subgradient methods are new in the literature of MSSQFP.

Moreover, the iteration complexity and convergence rates of the adaptive subgradient

method with stochastic control are presented in terms of the expectation of violation and the

expectation of distance from the solution set in Theorems 4.9 and 4.10, respectively. This

paper seems to be the first attempt to propose the stochastic control in subgradient methods

for solving the MSSQFP, and interestingly, provides a theoretical evidence for the benefit of

the stochastic control that it enjoys both advantages of low computational cost requirement

and low (worst-case) iteration complexity; see Remark 4.3 for explanation.

The present paper is organized as follows. In Section 2, we present the notations and

some preliminary lemmas which will be used in this paper. We provide a unified framework
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of adaptive subgradient methods with several general control schemes to solve the MSSQFP

in Section 3, and establish the quantitative convergence theory in Section 4.

2 Notations and preliminary results

Notations used in the present paper are standard in the n-dimensional Euclidean space Rn

with inner product ⟨·, ·⟩ and norm ∥ · ∥. For x ∈ Rn and r > 0, we use B(x, r) to denote the

closed ball centered at x with radius r, and use S to denote the unit sphere centered at the

origin. As usual, let Rm
+ and Rm

++ denote the nonnegative orthant and positive orthant of

Rm, respectively. The positive simplex in Rm is denoted by ∆m
+ , that is,

∆m
+ := {λ ∈ Rm

++ :

m∑
i=1

λi = 1}.

Moreover, we use the notation that a+ := max{a, 0} for any a ∈ R, define the positive part

function of f : Rn → R by

f+(x) := max{f(x), 0} for any x ∈ Rn.

For x ∈ Rn and Z ⊆ Rn, the Euclidean distance of x from Z and the Euclidean projection of

x onto Z are respectively defined by

dZ(x) := min
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.

The normal cone of Z at x is defined by

NZ(x) := {u ∈ Rn : ⟨u, z − x⟩ ≤ 0 for any z ∈ Z}.

A function f : Rn → R is said to be quasi-convex if

f(αx+ (1− α)y) ≤ max{f(x), f(y)} for any x, y ∈ Rn and α ∈ [0, 1].

The sublevel sets of f at x are denoted by

lev<f (x) := {y ∈ Rn : f(y) < f(x)} and lev≤f (x) := {x ∈ Rn : f(y) ≤ f(x)}.

A convex function can be characterized by the convexity of its epigraph, while the geometrical

interpretation for a quasi-convex function is characterized by the convexity of its sublevel sets.

The following equivalent characterization of a quasi-convex function is well-known.

Proposition 2.1. f : Rn → R is quasi-convex if and only if lev<f (x) (and/or lev≤f (x)) is

convex for each x ∈ Rn.
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The convex subdifferential ∂f(x) := {g ∈ Rn : f(y) ≥ f(x)+⟨g, y−x⟩, ∀y ∈ Rn} might be

empty for the quasi-convex function (e.g., f(x) = x3 at the origin). Hence, the introduction

of (nonempty) subdifferential of quasi-convex functions is an important issue in quasi-convex

optimization. Several specific types of quasi-subdifferentials have been introduced and ex-

plored for quasi-convex functions that are defined via the “normal cone” to the sublevel sets;

see [1, 15, 23] and references therein. In particular, Kiwiel [28], Censor and Segal [12], and

Hu et al. [23] employed the following quasi-subgradient, defined as a normal vector to its

strict sublevel set, in their concerned subgradient methods. It was reported in [23, Lemma

2.1] that the quasi-subdifferential of f is nontrivial whenever f is quasi-convex.

Definition 2.1. The quasi-subdifferential of f : Rn → R at x ∈ Rn is defined by

∂∗f(x) := Nlev<f (x)(x) = {g : ⟨g, y − x⟩ ≤ 0 for any y ∈ lev<f (x)}.

Any vector g ∈ ∂∗f(x) is called a quasi-subgradient of f at x.

As a normal cone to its sublevel set, the quasi-subdifferential of a quasi-convex function

contains at least a unit vector. This is a special property of the quasi-subdifferential beyond

the convex subdifferential (for a convex function). Moreover, it was claimed in [23] that

the quasi-subdifferential coincides with the convex cone hull of the convex subdifferential

whenever f is convex.

The notion of Hölder condition has been widely studied in harmonic analysis and fractional

analysis and extensively applied in economics and management science. In particular, the

Hölder condition of order 1 is reduced to the Lipschitz condition and is equivalent to the

bounded subgradient assumption, which is commonly assumed in the convergence study of

subgradient methods for convex optimization problems; see [3] and references therein.

Definition 2.2. Let 0 < β ≤ 1 and L > 0. The function f : Rn → R is said to satisfy the

Hölder condition of order β with modulus L on Rn if

|f(x)− f(y)| ≤ L∥x− y∥β for any x, y ∈ Rn.

The Hölder condition is a common assumption in convergence analysis of subgradient-

type methods for quasi-convex optimization; see [23, 27, 44, 24, 25, 26, 21] and references

therein. A fundamental property of the quasi-subgradient was provided under the Hölder

condition in [29, Proposition 2.1] and in [20, Lemma 2.1], which plays an important role in

the establishment of a basic inequality in convergence analysis of subgradient-type algorithms.

Lemma 2.1 ([20, Lemma 2.1]). Let f : Rn → R be a quasi-convex and continuous function,

X be a closed and convex set, and let S := {x ∈ X : f(x) ≤ 0}. Let 0 < β ≤ 1 and L > 0,

and suppose that f satisfies the Hölder condition of order β with modulus L on Rn. Then,

for any x ∈ S and y ∈ X \ S, it holds that

f(y) ≤ L ⟨g, y − x⟩β for each g ∈ ∂∗f(y) ∩ S. (2.1)
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We end this section by recalling the following two lemmas, which will be useful in con-

vergence rate analysis of subgradient methods.

Lemma 2.2 ([20, Lemma 2.1]). Let ai ≥ 0 for i = 1, 2, ..., n. Then the following assertions

are true.

(i) If γ ∈ (0, 1], then (
n∑

i=1

ai

)γ

≤
n∑

i=1

aγi ≤ n

(
n∑

i=1

ai

)γ

.

(ii) If γ ∈ [1,∞), then

1

nγ−1

(
n∑

i=1

ai

)γ

≤
n∑

i=1

aγi ≤

(
n∑

i=1

ai

)γ

.

Lemma 2.3 ([21, Lemma 2.2]). Let σ > 0 and a > 0, and {uk} ⊆ R+ be a sequence of

nonnegative scalars such that

uk+1 ≤ uk − au1+σ
k for each k ∈ N.

Then it holds that

uk ≤ u0 (1 + aσuσ0k)
− 1

r for each k ∈ N.

3 Adaptive subgradient methods for MSSQFP

Let A : Rn → Rm be a linear operator and X ⊆ Rn be a closed and convex set, I :=

{1, 2, . . . ,M} and J := {1, 2, . . . , N} be two finite index sets, and let {fi : i ∈ I} and

{gi : i ∈ J} be two families of quasi-convex and continuous functions defined on Rn and Rm,

respectively. In the present paper, we consider the multiple-sets split quasi-convex feasibility

problem (MSSQFP) that is to find a feasible point x ∈ Rn such that

x ∈ X, fi(x) ≤ 0, ∀i ∈ I, and gj(Ax) ≤ 0, ∀j ∈ J. (3.1)

Remark 3.1. (i) This type of MSSQFP includes the SFP, MSSFP and SQFP as special

cases. Particularly, it covers the SQFP [34] and the MSSFP [11] when I = J = {1} and

{fi : i ∈ I} and {gi : i ∈ J} are convex, respectively, and covers the SFP [10] when both of

them are satisfied.

(ii) This type of MSSQFP includes the feasibility problem as special cases when A is an

identity matrix, either convex [2] or quasi-convex [22, 20]. The feasibility problem is at the

core of the modeling of many problems in various areas of mathematics and physical sciences,

such as image recovery [13], wireless sensor networks localization [19], protein conformation

determination [?] and gene regulatory network inference [39].
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As usual, we assume that the MSSQFP is consistent, i.e., the solution set of the MSSQFP

(3.1) is nonempty:

S := {x ∈ X : fi(x) ≤ 0, ∀i ∈ I; gj(Ax) ≤ 0, ∀j ∈ J} ̸= ∅.

Throughout this paper, we always assume that each component function of the MSSQFP

(3.1) satisfies the Hölder condition as follows.

Assumption 1. There exist β ∈ (0, 1] and L > 0 such that {fi}i∈I and {gj}j∈J satisfy the

Hölder condition of order β with modulus L on X and on AX, respectively.

Remark 3.2. Assumption 1 premises the unified Hölder continuity order and modulus for

all component functions of the MSSQFP (3.1). This is actually equivalent to the Hölder

condition of each fi and each gj with different orders and moduli as assumed in [12, 27] if

X is bounded; one can also refer to [20, Remark 3.2]. Indeed, suppose that each fi and each

gj in (3.1) satisfies the Hölder condition of order βfi ∈ (0, 1] and βgj ∈ (0, 1] with modulus

Lfi > 0 and Lgj > 0 on X and AX, respectively. Then one can check that Assumption 1 is

satisfied with

β := min

{
min
i∈I

βfi , min
j∈J

βgj

}
and

L := max

{
max
i∈I

Lfi diam(X)βfi
−β, max

j∈J
Lgj diam(AX)βgj−β

}
.

One of the most popular and practical numerical algorithms for solving the split (convex

or quasi-convex) feasibility problem (3.1) is a class of subgradient methods; see [30, 34]

and references therein. Here we consider the adaptive subgradient methods for solving the

MSSQFP (3.1) in a general framework (of control schemes), stated as follows. For the sake

of simplicity, we write

θ := max{1, ∥A∥2}. (3.2)

Algorithm 3.1. Select an initial point x1 ∈ Rn and a sequence of stepsizes {λk} ⊆ (0,+∞)

satisfying

0 < λ ≤ λk ≤ λ <
1

θ
. (3.3)

For each k ∈ N, having xk ∈ Rn, we select nonempty index sets Ik ⊆ I and Jk ⊆ J , weights

{µk,i}i∈Ik ∈ ∆
|Ik|
+ and {νk,j}j∈Jk ∈ ∆

|Jk|
+ , calculate quasi-subgradients ϕk,i ∈ ∂∗fi(xk) ∩ S for

each i ∈ Ik and ψk,j ∈ ∂∗gj(Axk) ∩ S for each j ∈ Jk, and update xk+1 by

xk+1 := PX

xk − λk
∑
i∈Ik

µk,i

(
f+i (xk)

L

) 1
β

ϕk,i − λk
∑
j∈Jk

νk,j

(
g+j (Axk)

L

) 1
β

A⊤ψk,j

 . (3.4)

It is clear by (3.4) that

the sequence {xi}i>k will terminate at xk whenever it enters S. (3.5)
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Remark 3.3. (i) Algorithm 3.1 extends subgradient methods for solving the SQFP [34] and

MSSFP [38] to the scenario of multiple-sets context and quasi-convex system, and provides

a unified framework of general control schemes. In particular, when I = J = {1} and

{fi : i ∈ I} and take

(µk, νk) :=

{
(0, 1), if k is odd,

(1, 0), if k is even,

Algorithm 3.1 is reduced to [34, Algorithm 3.3] for the SQFP.

(i) Algorithm 3.1 extends subgradient methods for solving the CFP [2] and QFP [20] to the

context of split feasibility problems. When A is an identity matrix, Algorithm 3.1 is reduced

to subgradient methods for solving the QFP [20] and covers the ones in [2, 12].

To guarantee the convergence property of the adaptive subgradient methods, we shall

assume the following blanket condition on parameters. It premises a unified nonzero lower

bound for weights in Algorithm 3.1, which ensures each component of (3.1) to take sufficient

contribution for seeking a feasible solution; see [2, Remark 3.13] and [20, Assumption 2].

Assumption 2. There exists an η > 0 such that mini∈Ik µk,i ≥ η and minj∈Jk νk,j ≥ η for

each k ∈ N.

Under the blanket Assumptions 1 and 2, the following lemma provides a basic inequality

of Algorithm 3.1 for arbitrary type of control scheme, which shows a significant property and

plays a key tool in convergence analysis of subgradient methods.

Lemma 3.1. Let {xk} be a sequence generated by Algorithm 3.1 and x ∈ S. Then the

following assertions are true.

(i) It holds for each k ∈ N that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2λ(1− θλ)ηL
− 2

β

∑
i∈Ik

f+i (xk)
2
β +

∑
j∈Jk

g+j (Axk)
2
β

 . (3.6)

(ii) {∥xk − x∥} is monotonically decreasing, and hence {xk} is bounded.

Proof. Assertion (ii) directly follows from assertion (i) of this lemma and (3.3). Hence it

is sufficient to prove assertion (i). To this end, fix k ∈ N. It follows from (3.4) and the

nonexpansive property of projection operator that

∥xk+1 − x∥2

≤∥xk − λkL
− 1

β

∑
i∈Ik

µk,if
+
i (xk)

1
β ϕk,i − λkL

− 1
β

∑
j∈Jk

νk,jg
+
j (Axk)

1
βA⊤ψk,j − x∥2

= ∥xk − x∥2 + λ2kL
− 2

β ∥
∑
i∈Ik

µk,if
+
i (xk)

1
β ϕk,i +

∑
j∈Jk

νk,jg
+
j (Axk)

1
βA⊤ψk,j∥2 (3.7)

− 2λkL
− 1

β

∑
i∈Ik

µk,if
+
i (xk)

1
β ⟨xk − x, ϕk,i⟩ − 2λkL

− 1
β

∑
j∈Jk

νk,jg
+
j (Axk)

1
β ⟨Axk −Ax,ψk,j⟩.
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Note by x ∈ S that fi(x) ≤ 0 for each i ∈ I. Then, for each i ∈ Ik with fi(xk) > 0,

by Assumption 1, Lemma 2.1 is applicable to concluding that ⟨xk − x, ϕk,i⟩ ≥
(
f+
i (xk)
L

) 1
β
;

otherwise, f+i (xk) = 0. Hence we conclude that∑
i∈Ik

µk,if
+
i (xk)

1
β ⟨xk − x, ϕk,i⟩ ≥ L

− 1
β

∑
i∈Ik

µk,if
+
i (xk)

2
β . (3.8)

Using the similar arguments we did for (3.8), we can obtain that∑
j∈Jk

νk,jg
+
j (Axk)

1
β ⟨Axk −Ax,ψk,j⟩ ≥ L

− 1
β

∑
j∈Jk

νk,jg
+
j (Axk)

2
β . (3.9)

On the other side, we obtain by the convexity of ∥ · ∥2 that

∥
∑
i∈Ik

µk,if
+
i (xk)

1
β ϕk,i +

∑
j∈Jk

νk,jg
+
j (Axk)

1
βA⊤ψk,j∥2

=4 ∥
∑
i∈Ik

µk,i
2
f+i (xk)

1
β ϕk,i +

∑
j∈Jk

νk,j
2
g+j (Axk)

1
βA⊤ψk,j∥2 (3.10)

≤ 2
∑
i∈Ik

µk,if
+
i (xk)

2
β + 2∥A∥2

∑
j∈Jk

νk,jg
+
j (Axk)

2
β .

(thanks to {µk,i}i∈Ik ∈ ∆
|Ik|
+ and {νk,j}j∈Jk ∈ ∆

|Jk|
+ , ϕk,i ∈ S and ψk,j ∈ S for each i ∈ Ik

and j ∈ Jk). Combining this with (3.8) and (3.9), (3.7) is reduced to

∥xk+1−x∥2 ≤ ∥xk−x∥2−2λk(1−λk)
∑
i∈Ik

µk,i

(
f+i (xk)

L

) 2
β

−2λk(1−∥A∥2λk)
∑
j∈Jk

νk,j

(
g+j (Axk)

L

) 2
β

.

This, together with (3.2)-(3.3) and Assumption 2, shows (3.6). The proof is complete.

The control scheme of index sets {Ik} and {Jk} plays a central role in determining the

active indices to be executed, and is crucial in guaranteeing the convergence property and

numerical performance of subgradient methods for solving the feasibility problems. The most

two extensively used control schemes are the most violated constraint control and the almost

cyclic control; see, e.g., [2, 12, 20]. In this paper, we will consider several general control

schemes as discussed in [20]. In the following definitions of the general control schemes, item

(a) is an extension of the most violated constraint control and the parallel control, item (b)

is an extension of the almost cyclic control and the parallel control, and item (c) takes the

increasingly popular idea of the stochastic control from [7, 32, 41].

Definition 3.1. Let α ∈ (0, 1] and s ∈ N, and let {xk} be a sequence generated by Algorithm

3.1. We say that {Ik} is

(a) the α-most violated constraints control if

Ik := {ik ∈ I : f+ik (xk) ≥ αmax
i∈I

f+i (xk)} for each k ∈ N.
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(b) the s-intermittent control if

I = Ik ∪ Ik+1 ∪ · · · ∪ Ik+s−1 for each k ∈ N.

(c) the stochastic control if Ik = {ωk} that is a uniformly distributed random variable on I.

4 Quantitative convergence theory

In this section, we assume that Assumptions 1 and 2 are always satisfied, and establish the

quantitative convergence theory, including the global convergence, the iteration complexity

and the convergence rate, of Algorithm 3.1 with the α-most violated constraints control, the

s-intermittent control and the stochastic control, respectively. To explore the convergence

property, the violations of the MSSQFP (3.1) are usually measured by

F+(x) := max
i∈I

f+i (x) and G+(Ax) := max
j∈J

g+j (Ax) for each x ∈ Rn. (4.1)

It is clear that

x ∈ S ⇔ x ∈ X, F+(x) = 0, G+(Ax) = 0.

4.1 α-most violated constraints control

To start convergence analysis, the following lemma provides the basic inequality for Algorithm

3.1 with the α-most violated constraints control, which directly follows from Lemma 3.1

(taking x := PS(xk)) and Definition 3.1(a).

Lemma 4.1. Let {xk} be a sequence generated by Algorithm 3.1 with {Ik} and {Jk} being

the α-most violated constraints controls. Then it holds for each k ∈ N that

d2S(xk+1) ≤ d2S(xk)− 2λ(1− θλ)η
(α
L

) 2
β
(
F+(xk)

2
β +G+(Axk)

2
β

)
. (4.2)

By virtue of Lemma 4.1, this section aims to investigate the global convergence, the

iteration complexity and the convergence rate for Algorithm 3.1 with the α-most violated

constraints control.

4.1.1 Global convergence

We first establish the global convergence for the adaptive subgradient method with the α-most

violated constraints control.

Theorem 4.1. Let {xk} be generated by Algorithm 3.1 with {Ik} and {Jk} being the α-most

violated constraints controls. Then {xk} converges to a feasible solution of the MSSQFP

(3.1).

10



Proof. Note by Lemma 3.1(ii) that {xk} is bounded, and thus, must have a cluster point,

denoted by x̄. It follows from (4.2) in Lemma 4.1 that

∞∑
k=1

(
F+(xk)

2
β +G+(Axk)

2
β

)
≤ 1

2λ(1− θλ)η

(
L

α

) 2
β

d2S(x1) <∞.

Consequently, limk→∞ F+(xk) = 0 and limk→∞G+(Axk) = 0, which implies x̄ ∈ S by the

continuity of {fi}i∈I and {gj}j∈J . Recall from Lemma 3.1(ii) that {∥xk−x̄∥} is monotonically

decreasing. Hence {xk} converges to this x̄ ∈ S, and the proof is complete.

4.1.2 Iteration complexity

Given δ > 0, the (worst-case) iteration complexity of a particular algorithm is to estimate

the number of iterations K(δ) required by the algorithm to obtain an approximate δ-feasible

solution, that is,

min
1≤k≤K(δ)

max{F+(xk), G
+(Axk)} ≤ δ.

As usual, we use ⌈t⌉ to denote the smallest integer larger than t.

Theorem 4.2. Let {xk} be generated by Algorithm 3.1 with {Ik} and {Jk} being the α-most

violated constraints controls. Let δ > 0 and Km := ⌈ d2S(x1)

2λ(1−θλ)η

(
L
αδ

) 2
β ⌉. Then

min
1≤k≤Km

max{F+(xk), G
+(Axk)} ≤ δ.

Proof. Proving by contradiction, we assume that max{F+(xk), G
+(Axk)} > δ, and conse-

quently F+(xk)
2
β + G+(Axk)

2
β > δ

2
β , for each 1 ≤ k ≤ Km. Then it follows from (4.2)

that

d2S(xk+1) < d2S(xk)− 2λ(1− θλ)η

(
αδ

L

) 2
β

.

Summing the above inequality over k = 1, . . . ,Km, we derive that

0 ≤ d2S(xKm+1) < d2S(x1)− 2Kmλ(1− θλ)η

(
αδ

L

) 2
β

,

which contradicts with the definition of Km. The proof is complete.

Remark 4.1. Theorem 4.2 shows that Algorithm 3.1 with the α-most violated constraints

control possesses a worst-case iteration complexity of O(1/k
β
2 ) to a feasible solution. In par-

ticular, as mentioned above, the α-most violated constraints control covers the most violated

constraint control when α = η = 1; also see [20, Remark 3.6]. Hence, as an application of

Theorem 4.2, the iteration complexity for the most violated constraint control is

Km :=

⌈
d2S(x1)

2λ(1− θλ)

(
L

δ

) 2
β

⌉
.

11



4.1.3 Convergence rate analysis

The establishment of convergence rate is significant in guaranteeing the numerical perfor-

mance of relevant algorithms. The error bound property plays an important role in con-

vergence rate analysis of numerical algorithms. The notion of the (Lipschitz-type) error

bound property was introduced by [17, 35] for the linear inequality system and convex in-

equality system respectively, and has been extensively used in convergence rate analysis of

various numerical algorithms; see [5, 39, 45] and references therein. As a natural extension,

the Hölder-type error bound property was introduced for polynomial systems [31] and has

been widely explored and applied in [6, 33] and references therein. In particular, Suzuki

and Kuroiwa [37] investigated the Hölder-type error bound property for the quasi-convex in-

equality system, and Hu et al. [20] applied the Hölder-type error bound property to establish

the linear/sublinear convergence rates of subgradient methods for the quasi-convex feasibility

problem. Below we introduce the Hölder-type bounded error bound for the MSSQFP (3.1).

Definition 4.1. The inequality system (3.1) is said to satisfy the Hölder-type bounded error

bound property of order q > 0 if, for any γ > 0 such that S∩B(0, γ) ̸= ∅, there exists κ(γ) > 0

such that

dqS(x) ≤ κ(γ) max
i∈I, j∈J

{
f+i (x), g+j (Ax)

}
for each x ∈ X ∩ B(0, γ). (4.3)

In particular, the inequality system (3.1) is said to satisfy the (Lipschitz-type) bounded error

bound property if (4.3) holds with q = 1.

Following a line of analysis similar to [20, Proposition 3.1], we can provide in the following

proposition a sufficient condition for the Hölder-type bounded error bound property of the

MSSQFP (3.1) in terms of the Hölder-type bounded error bound property of each component

function and the Slater condition of their sublevel sets.

Proposition 4.1. Suppose that each inequality system {fi(x) ≤ 0} and {gi(Ax) ≤ 0} satisfies

the Hölder-type bounded error bound property of order q and the Slater condition is satisfied:

{x ∈ X : fi(x) < 0, ∀i ∈ I; gi(Ax) < 0, ∀j ∈ J} ̸= ∅. (4.4)

Then the MSSQFP (3.1) satisfies the Hölder-type bounded error bound property of order q.

The main theorem of this subsection is as follows, which presents the convergence rates

of the adaptive subgradient method with the α-most violated constraints control under the

assumption of the Hölder-type bounded error bound property.

Theorem 4.3. Let {xk} be generated by Algorithm 3.1 with {Ik} and {Jk} being the α-most

violated constraints controls. Suppose that (3.1) satisfies the Hölder-type bounded error bound

property of order q > 0. Then the following assertions are true.

12



(i) If q = β, then {xk} converges to a feasible solution x̄ ∈ S at a linear rate; particularly,

there exist c ≥ 0 and τ ∈ (0, 1) such that

∥xk − x̄∥ ≤ cτk for each k ∈ N. (4.5)

(ii) If q > β, then {xk} converges to a feasible solution x̄ ∈ S at a sublinear rate; particularly,

there exists c ≥ 0 such that

∥xk − x̄∥ ≤ ck
− β

2(q−β) for each k ∈ N. (4.6)

Proof. Noting by Lemma 3.1(ii) that {xk} is bounded, we can assume that there exists γ > 0

such that S ∩ B(0, γ) ̸= ∅ and {xk} ⊆ B(0, γ). By the assumption that the MSSQFP (3.1)

satisfies the Hölder-type bounded error bound property of order q > 0, there exists κ > 0

(depending on this γ) such that (4.3) holds. Since {xk} ⊆ B(0, γ), one has by (4.3) and (4.1)

that

dqS(xk) ≤ κmax
{
F+(xk), G

+(Axk)
}

for each k ∈ N.

Noting that F+(xk)
2
β +G+(Axk)

2
β ≥ max {F+(xk), G

+(Axk)}
2
β and β ≤ 1, it follows that

d
2q
β

S (xk) ≤ κ
2
β

(
F+(xk)

2
β +G+(Axk)

2
β

)
for each k ∈ N. (4.7)

This, together with (4.2), shows

d2S(xk+1) ≤ d2S(xk)− ρ d
2q
β

S (xk) for each k ∈ N,

with ρ := 2λ(1− θλ)η
(

α
κL

) 2
β . Consequently, there exists c ≥ 0 such that

dS(xk) ≤

{
cτk, if q = β,

ck
− β

2(q−β) , if q > β,
(4.8)

with τ :=
√
1− ρ and by applying Lemma 2.3 (with d2S(xk), ρ,

q
β − 1 in place of uk, a, σ),

for each k ∈ N.
Fix l > k ∈ N. It follows from Lemma 3.1(ii) (taking x := PS(xk)) that

∥xl − xk∥ ≤ ∥xl − PS(xk)∥+ ∥xk − PS(xk)∥ ≤ 2∥xk − PS(xk)∥ = 2dS(xk).

Hence, by the convergence of {xl} to x̄ ∈ S as shown in Theorem 4.1, we obtain that

∥xk − x̄∥ = lim
l→∞

∥xk − xl∥ ≤ 2dS(xk).

This, together with (4.8), implies (4.5) and (4.6). The proof is complete.
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4.2 s-intermittent control

This subsection aims to explore the global convergence, the iteration complexity and the

convergence rate for the adaptive subgradient method with the s-intermittent control. To

proceed, we first deduce the basic inequality for Algorithm 3.1 with the s-intermittent control

by virtue of Lemma 3.1.

Lemma 4.2. Let {xk} be a sequence generated by Algorithm 3.1 with {Ik} and {Jk} being

the s-intermittent controls. Then it holds for each k ∈ N that

d2S(xs(k+1)) ≤ d2S(xsk)−
4λ(1− θλ)η

1 + 4s
(2L)

− 2
β

(
F+(xsk)

2
β +G+(Axsk)

2
β

)
. (4.9)

Proof. Fix x ∈ S and k ∈ N. By applying (3.6) in Lemma 3.1 inductively, we obtain that

∥xs(k+1)−x∥2 ≤ ∥xsk−x∥2−2λ(1−θλ)ηL− 2
β

s−1∑
t=0

 ∑
i∈Isk+t

f+i (xsk+t)
2
β +

∑
j∈Jsk+t

g+j (Axsk+t)
2
β

 .

(4.10)

Below we estimate the second term on the right hand side of (4.10) in terms of F+(xsk) and

G+(Axsk), respectively. Firstly, let ik ∈ I be the most violated index of the inequality system

{fi(x) ≤ 0}i∈I at xsk, that is,

f+ik (xsk) = F+(xsk). (4.11)

By definition of the s-intermittent control (cf. Definition 3.1(b)), there exists tk ∈ [0, s − 1]

such that ik ∈ Isk+tk . Then one has by Assumption 1 that

f+ik (xsk)
2
β ≤

(
f+ik (xsk+tk) + L∥xsk+tk − xsk∥β

) 2
β

≤ 2
2
β
−1
(
f+ik (xsk+tk)

2
β + L

2
β ∥xsk+tk − xsk∥2

)
(4.12)

(by Lemma 2.2(i) as β ≤ 1). Since ik ∈ Isk+tk and tk ∈ [0, s− 1], we get

f+ik (xsk+tk)
2
β ≤

∑
i∈Isk+tk

f+i (xsk+tk)
2
β ≤

s−1∑
t=0

∑
i∈Isk+t

f+i (xsk+t)
2
β . (4.13)

On the other side, in view of Algorithm 3.1, we obtain by (3.4) and (3.10) that

∥xk+1 − xk∥2 ≤ λ2kL
− 2

β ∥
∑
i∈Ik

µk,if
+
i (xk)

1
β ϕk,i +

∑
j∈Jk

νk,jg
+
j (Axk)

1
βA⊤ψk,j∥2

≤ 2λ
2
L
− 2

β

∑
i∈Ik

f+i (xk)
2
β + 2λ

2∥A∥2L− 2
β

∑
j∈Jk

g+j (Axk)
2
β .
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(thanks to (3.3) and {µk,i}i∈Ik ∈ ∆
|Ik|
+ and {νk,j}j∈Jk ∈ ∆

|Jk|
+ ) for each k ∈ N. Then we

derive by Lemma 2.2(ii) that

∥xsk+tk − xsk∥2 ≤ s

s−1∑
t=0

∥xsk+t+1 − xsk+t∥2

≤ 2sλ
2
L
− 2

β

s−1∑
t=0

∑
i∈Isk+t

f+i (xsk+t)
2
β + 2sλ

2∥A∥2L− 2
β

s−1∑
t=0

∑
j∈Jsk+t

g+j (Axsk+t)
2
β .

This, together with (4.11)-(4.13), deduces that

F+(xsk)
2
β

≤ 2
2
β
−1
(
1 + 2sλ

2
) s−1∑

t=0

∑
i∈Isk+t

f+i (xsk+t)
2
β + 2

2
β sλ

2∥A∥2
s−1∑
t=0

∑
j∈Jsk+t

g+j (Axsk+t)
2
β (4.14)

≤ 2
2
β
−1

(1 + 2s)

s−1∑
t=0

∑
i∈Isk+t

f+i (xsk+t)
2
β + 2

2
β s

s−1∑
t=0

∑
j∈Jsk+t

g+j (Axsk+t)
2
β

(due to (3.2) and (3.3)). Using the similar arguments we did for (4.14), we can obtain that

G+(Axsk)
2
β ≤ 2

2
β
−1

(1 + 2s)

s−1∑
t=0

∑
j∈Jsk+t

g+j (Axsk+t)
2
β + 2

2
β s

s−1∑
t=0

∑
i∈Isk+t

f+i (xsk+t)
2
β .

These, together with (4.10) (taking x := PS(xsk)), implies (4.9). The proof is complete.

4.2.1 Global convergence

Theorem 4.4. Let {xk} be generated by Algorithm 3.1 with {Ik} and {Jk} being the s-

intermittent controls. Then {xk} converges to a feasible solution of the MSSQFP (3.1).

Proof. Note by Lemma 3.1(ii) that {xsk} is bounded, and thus, must have a cluster point,

denoted by x̄. It follows from (4.9) in Lemma 4.2 that

∞∑
k=1

(
F+(xsk)

2
β +G+(Axsk)

2
β

)
≤ 1 + 4s

4λ(1− θλ)η
(2L)

2
β d2S(xs) <∞.

This shows that limk→∞ F+(xsk) = 0 and limk→∞G+(Axsk) = 0, and thus x̄ ∈ S by the con-

tinuity of {fi}i∈I and {gj}j∈J . This, together with Lemma 3.1(ii), shows that {xk} converges

to x̄ ∈ S. The proof is complete.

4.2.2 Iteration complexity

Theorem 4.5. Let {xk} be generated by Algorithm 3.1 with {Ik} and {Jk} being the s-

intermittent controls. Let δ > 0 and Kc := ⌈ s(1+4s)d2S(x1)

4λ(1−θλ)η

(
2L
δ

) 2
β ⌉. Then

min
1≤k≤Kc

max{F+(xk), G
+(Axk)} ≤ δ.
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Proof. Proving by contradiction, we assume that max{F+(xk), G
+(Axk)} > δ, and thus

F+(xk)
2
β +G+(Axk)

2
β > δ

2
β , for each 1 ≤ k ≤ Kc. Then it follows from (4.9) that

d2S(xs(k+1)) < d2S(xsk)−
4λ(1− θλ)η

1 + 4s

(
δ

2L

) 2
β

.

Summing the above inequality over k = 1, . . . , Kc
s , we derive that

0 ≤ d2S(xKc+s) < d2S(xs)−
Kc

s

4λ(1− θλ)η

1 + 4s

(
δ

2L

) 2
β

,

which contradicts with the definition of Kc. The proof is complete.

Remark 4.2. Theorem 4.5 shows that Algorithm 3.1 with the s-intermittent control has a

worst-case iteration complexity of O(1/k
β
2 ) to a feasible solution. Particularly, as mentioned

above, the s-intermittent control coves the almost cyclic control when s = max{M,N} and

η = 1; also see [20, Remark 3.6]. Hence, as a direct application of Theorem 4.5, the iteration

complexity for the almost cyclic control is

Kc :=

⌈
max{M,N}(1 + 4max{M,N})d2S(x1)

4λ(1− θλ)η

(
2L

δ

) 2
β

⌉
.

In contrast to Remark 4.1, we observe that the almost cyclic control requires a much larger

number of iterations than the most violated constraint control:

Kc

Km
= max{M,N}(1 + 4max{M,N})2

β
2
−1 ≫ 1.

This shows a benefit of the most violated constraints control over the almost cyclic control.

Nevertheless, the almost cyclic control has an advantage of low computational cost require-

ment, especially for large-scale problems; because it only uses the information of few compo-

nent functions at each iteration, while the most violated constraints control and the parallel

control need to find the most violated index through all component functions or calculate the

subgradients of all component functions.

4.2.3 Convergence rate analysis

Theorem 4.6. Let {xk} be generated by Algorithm 3.1 with {Ik} and {Jk} being the s-

intermittent controls. Suppose that (3.1) satisfies the Hölder-type bounded error bound prop-

erty of order q > 0. Then the following assertions are true.

(i) If q = β, then {xk} converges to a feasible solution x̄ ∈ S at a linear rate.

(ii) If q > β, then there exists c ≥ 0 such that

∥xk − x̄∥ ≤ ck
− β

2(q−β) for each k ∈ N.
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Proof. Similar to the beginning of proof of Theorem 4.3, there exists κ > 0 such that (4.7) is

satisfied. By (4.9) and (4.7), we obtain that

d2S(xs(k+1)) ≤ d2S(xsk)− ρ d
2q
β

S (xsk) for each k ∈ N,

where ρ := 4λ(1−θλ)η
1+4s

(
1

2κL

) 2
β . Consequently, there exists c ≥ 0 such that

dS(xk) ≤

{
cτk, if q = β,

ck
− β

2(q−β) , if q > β,

with τ :=
√
1− ρ and by applying Lemma 2.3, for each k ∈ N. Similar to the end of proof of

Theorem 4.3, we can obtain the conclusions, and the proof is complete.

4.3 Stochastic control

Deterministic control schemes always suffer from certain drawbacks. Specifically, the most

violated constraints control and the parallel control consume expensive computational cost to

find the most violated index through all component functions or calculate the subgradients of

all component functions at each iteration when the number of component functions is large;

while, the almost cyclic control bears with a higher iteration complexity than these two types

of control schemes; see, e.g., [20].

The idea of stochastic index scheme is increasingly popular in optimization algorithms

and applications; e.g., first-order algorithms with random projection in large-scale network

optimization problems [41], and incremental subgradient methods with random component

selection in distributed optimization problems [3, 27]. A typical example is stochastic gradient

descent algorithms in machine learning [7], in which only one component function is randomly

selected to construct the descent direction at each iteration.

Inspired by the idea of stochastic index scheme, this subsection aims to consider the

stochastic control in the adaptive subgradient method for solving the MSSQFP (3.1) and

investigate its quantitative convergence theory. An interesting finding is disclosed by Theorem

4.9 that the stochastic control has a significant favorable effect on the performance of the

adaptive subgradient method; concretely, the stochastic control enjoys both advantages of

the low computational cost requirement and the low iteration complexity; see Remark 4.3 for

details.

To proceed convergence analysis of the adaptive subgradient method with the stochastic

control, we provide below a basic inequality in terms of conditional expectation.

Lemma 4.3. Let {xk} be generated by Algorithm 3.1 with {Ik} and {Jk} being the stochastic

controls, and let Fk := {x1, . . . , xk} for each k ∈ N. Then it holds for each x ∈ S and k ∈ N
that

E
{
d2S(xk+1) | Fk

}
≤ d2S(xk)−

2λ(1− θλ)

max{M,N}
L
− 2

β

(
F+(xk)

2
β +G+(Axk)

2
β

)
. (4.15)
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Proof. Fix x ∈ S and k ∈ N. Since Ik = {ωk}, Jk = {πk} and η = 1 in the stochastic control

(cf. Definition 3.1(c)), it follows from Lemma 3.1 (taking x := PS(xk)) that

d2S(xk+1) ≤ d2S(xk)− 2λ(1− θλ)L
− 2

β

(
f+ωk

(xk)
2
β + g+πk

(Axk)
2
β

)
.

Taking the conditional expectation with respect to Fk, one has

E
{
d2S(xk+1) | Fk

}
≤ d2S(xk)− 2λ(1− θλ)L

− 2
β

(
E
{
f+ωk

(xk)
2
β | Fk

}
+ E

{
g+πk

(Axk)
2
β | Fk

})
.

(4.16)

Noting by definition of the stochastic control (cf. Definition 3.1(c)) that ωk is uniformly

distributed on I, we have by the elementary probability theory that

E
{
f+ωk

(xk)
2
β | Fk

}
=

1

M

∑
i∈I

f+i (xk)
2
β ≥ 1

M
F+(xk)

2
β ;

similarly,

E
{
g+πk

(Axk)
2
β | Fk

}
=

1

N

∑
j∈J

g+j (Axk)
2
β ≥ 1

N
G+(Axk)

2
β .

These, together with (4.16), implies (4.15). The proof is complete.

The supermartingale convergence theorem is taken from [4, p. 148], which is useful in

convergence analysis of the subgradient method with the stochastic control.

Theorem 4.7. Let {Yk}, {Zk} and {Wk} be three sequences of random variables, and let

{Fk} be a sequence of sets of random variables such that Fk ⊆ Fk+1 for each k ∈ N. Suppose

for any k ∈ N that

(a) Yk, Zk and Wk are functions of nonnegative random variables in Fk;

(b) E {Yk+1 | Fk} ≤ Yk − Zk +Wk;

(c)
∑∞

k=1Wk <∞.

Then
∑∞

k=1 Zk <∞ and {Yk} converges to a nonnegative random variable with probability 1.

4.3.1 Global convergence

Theorem 4.8. Let {xk} be generated by Algorithm 3.1 with {Ik} and {Jk} being the stochastic

controls. Then {xk} converges to a feasible solution of the MSSQFP (3.1) with probability 1.

Proof. Note by Lemma 3.1(ii) that {xk} is bounded, and thus, must have a cluster point,

denoted by x̄. By virtue of (4.15) in Lemma 4.3, Theorem 4.7 is applicable to showing

that
∑∞

k=1 F
+(xk)

2
β +G+(Axk)

2
β <∞ with probability 1. Hence limk→∞ F+(xk)

2
β = 0 and

limk→∞G+(Axk)
2
β = 0, and consequently x̄ ∈ S (by the continuity of {fi}i∈I and {gj}j∈J),

with probability 1. This, together with Lemma 3.1(ii), shows that {xk} converges to this

x ∈ S with probability 1. The proof is complete.
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4.3.2 Iteration complexity

Theorem 4.9. Let {xk} be generated by Algorithm 3.1 with {Ik} and {Jk} being the stochastic

controls. Let δ > 0 and Ks :=
max{M,N}d2S(x1)

2λ(1−θλ)

(
L
δ

) 2
β . Then

min
1≤k≤Ks

max{E
{
F+(xk)

}
,E
{
G+(Axk)

}
} ≤ δ.

Proof. Proving by contradiction, we assume that max{E {F+(xk)} ,E {G+(Axk)}} > δ for

each 1 ≤ k ≤ Ks. Consequently, max
{
E{F+(xk)

2
β },E{G+(Axk)

2
β }
}
> δ

2
β by the convexity

of t
2
β on R+ (as β ≤ 1), and thus E

{
F+(xk)

2
β +G+(Axk)

2
β

}
> δ

2
β . Taking the expectation

on (4.15), one has for each 1 ≤ k ≤ Ks that

E
{
d2S(xk+1)

}
≤ E

{
d2S(xk)

}
− 2λ(1− θλ)

max{M,N}
L
− 2

βE
{
F+(xk)

2
β +G+(Axk)

2
β

}
< E

{
d2S(xk)

}
− 2λ(1− θλ)

max{M,N}

(
δ

L

) 2
β

.

Summing the above inequality over k = 1, . . . ,Ks, we derive that

0 ≤ E
{
d2S(xk+1)

}
< d2S(x1)−Ks

2λ(1− θλ)

max{M,N}

(
δ

L

) 2
β

,

which contradicts with the definition of Ks. The proof is complete.

Remark 4.3. Theorem 4.9 provides a theoretical evidence for the benefit of the stochastic

control in the sense of the worst-case iteration complexity. In particular, the stochastic control

not only enjoys the significant advantage of the low computational cost requirement as the

almost cyclic control (much less than the most violated control and the parallel control),

but also owns a much lower iteration complexity than the almost cyclic control. Indeed, by

Theorem 4.9 and Remark 4.2, we derive

Ks

Kc
=

21−
β
2

(1 + 4max{M,N})
≪ 1.

4.3.3 Convergence rate analysis

Theorem 4.10. Let {xk} be generated by Algorithm 3.1 with {Ik} and {Jk} being the s-

tochastic controls. Suppose that (3.1) satisfies the Hölder-type bounded error bound property

of order q > 0. Then the following assertions are true.

(i) If q = β, then there exist c ≥ 0 and τ ∈ (0, 1) such that

E {dS(xk)} ≤ cτk for each k ∈ N. (4.17)
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(ii) If q > β, then there exists c ≥ 0 such that

E {dS(xk)} ≤ ck
− β

2(q−β) for each k ∈ N. (4.18)

Proof. Similar to the beginning of proof of Theorem 4.3, there exists κ > 0 such that (4.7) is

satisfied. By (4.15) and (4.7), we obtain that

E
{
d2S(xk+1) | Fk

}
≤ d2S(xk)− ρd

2q
β

S (xk),

where ρ := 2λ(1−θλ)
max{M,N}

(
1
κL

) 2
β . Taking the expectation on the above inequality, we derive by

the convexity of t
q
β on R+ (as q ≥ β) that

E
{
d2S(xk+1)

}
≤ E

{
d2S(xk)

}
− ρ

(
E
{
d2S(xk)

}) q
β .

This shows that there exists c ≥ 0 such that

E
{
d2S(xk)

}
≤

{
cτ2k, if q = β,

ck
− β

(q−β) , if q > β,

with τ :=
√
1− ρ and by applying Lemma 2.3, for each k ∈ N. These, together with that

(E {dS(xk)})2 ≤ E
{
d2S(xk)

}
, imply (4.17) and (4.18), respectively. The proof is complete.
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[32] A. Nedić. Random algorithms for convex minimization problems. Mathematical Pro-

gramming, 129(2):225–253, 2011.

[33] K. F. Ng and X. Y. Zheng. Global error bounds with fractional exponents. Mathematical

Programming, 88:357–370, 2000.

[34] N. Nimana, A. P. Farajzadeh, and N. Petrot. Adaptive subgradient method for the split

quasi-convex feasibility problems. Optimization, 65(10):1885–1898, 2016.

22



[35] J.-S. Pang. Error bounds in mathematical programming. Mathematical Programming,

79(1-3):299–332, 1997.

[36] I. M. Stancu-Minasian. Fractional Programming. Kluwer Academic Publishers, Dor-

drecht, 1997.

[37] S. Suzuki and D. Kuroiwa. Nonlinear error bounds for quasiconvex inequality systems.

Optimization Letters, 11(1):107–120, 2017.

[38] F. Wang. Polyak’s gradient method for split feasibility problem constrained by level

sets. Numerical Algorithms, 77:925–938, 2018.

[39] J. Wang, Y. Hu, C. Li, and J.-C. Yao. Linear convergence of CQ algorithms and appli-

cations in gene regulatory network inference. Inverse Problems, 33(5):055017, 2017.

[40] J. Wang, Y. Hu, C. K. W. Yu, and X. Zhuang. A family of projection gradient methods

for solving the multiple-sets split feasibility problem. Journal of Optimization Theory

and Applications, 183(2):520–534, 2019.

[41] M. Wang and D. P. Bertsekas. Stochastic first-order methods with random constraint

projection. SIAM Journal on Optimization, 26(1):681–717, 2016.

[42] M. Wen, J. Peng, and Y. Tang. A cyclic and simultaneous iterative method for solving the

multiple-sets split feasibility problem. Journal of Optimization Theory and Applications,

166(3):844–860, 2015.
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