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Abstract

A transcriptional regulatory network (TRN) is a collection of transcription regulators with their associated downstream genes, which
is highly condition-specific. Understanding how cell states can be programmed through small molecules/drugs or conditions by
modulating the whole gene expression system granted us the potential to amend abnormal cells and cure diseases. Condition
Orientated Regulatory Networks (CORN, https://qinlab.sysu.edu.cn/home) is a library of condition (small molecule/drug treatments
and gene knockdowns)-based transcriptional regulatory sub-networks (TRSNs) that come with an online TRSN matching tool. It allows
users to browse condition-associated TRSNs or match those TRSNs by inputting transcriptomic changes of interest. CORN utilizes
transcriptomic changes data after specific conditional treatment in cells, and in vivo transcription factor (TF) binding data in cells,
by combining TF binding information and calculations of significant expression alterations of TFs and genes after the conditional
treatments, TRNs under the effect of different conditions were constructed. In short, CORN associated 1805 different types of specific
conditions (small molecule/drug treatments and gene knockdowns) to 9553 TRSNs in 25 human cell lines, involving 204TFs. By linking
and curating specific conditions to responsive TRNs, the scientific community can now perceive how TRNs are altered and controlled
by conditions alone in an organized manner for the first time. This study demonstrated with examples that CORN can aid the
understanding of molecular pathology, pharmacology and drug repositioning, and screened drugs with high potential for cancer and
coronavirus disease 2019 (COVID-19) treatments.
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Introduction
The tradition and novel approaches of drug
development and repositioning
Traditionally, the ‘one gene, one drug, one disease’ paradigm was
the leading philosophy in the field of rational drug design [1,
2]. However, cell systems are composed of networks instead of
linear pathways, where intrinsic buffering mechanisms against
the effect of single-target drugs are present due to functional
redundancy and compensatory routes [3]. New development of
drugs had been saturated in some disciplines in the 1991–2000
[4]. Therefore, a new strategy has also been adopted in recent
years by embracing the idea of multitarget therapy [5, 6]. Rather
than targeting a single target in one pathway, drugs targeting

multiple targets and modulating the whole system have been
demonstrated to be more efficient with less toxicity and less
prone to drug resistance in some specific cases [7–9]. A deeper
understanding of disease and pharmacological mechanisms in
terms of gene regulatory systems is able to aid drug repositioning.
And such repositioning is especially important during times of
emergency such as COVID-19 when time is running short for novel
drug development and manufacturing. Severe Acute Respiratory
Syndrome Coronavirus-2 (SARS-CoV-2)’s targets and their associ-
ated biological processes were associated into COVID-19 related
biological networks. These networks were used for studying the
disease pathology as well as the screening of potential drugs for
COVID-19 treatment [10, 11].
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Transcriptional regulatory networks (TRNs) can
be controlled through small molecules/drugs
Over the past decades, novel advancements in sequencing tech-
nology enable us to gather different types of biological informa-
tion such as genome, transcriptome and protein to DNA interac-
tome in a fast and economical way. With the knowledge of how
transcriptions are regulated, the integration of the mentioned
biological information can reveal the gene regulatory network
from behind by defining regulatory interactions among TFs and
their target genes, constructing TRNs. A TRN is a collection of all
transcription regulators with their associated downstream gene
edges, which is highly condition-specific. The TRNs activated in
a cell define its cell identity and function, where abnormal cell
states lead to pathological conditions. Small molecule and drug
treatments were shown to alternate the expression of transcrip-
tion regulators by ligand targeting to their interacting partners
[12]. For example, vorinostat is a drug targeting and inhibiting
histone deacetylases (HDACs) [13], while HDACs were found to
interact with the transcription factor (TF) family of regulatory
factor for X-box and alternate the expression of downstream
gene [14]. In other words, small molecules are able to affect
TRN, and TRN can in turn govern the overall gene expression
system in a cell, thus programming cell states. Treating disease
through manipulation of gene regulatory networks has already
been discussed in the field of precision medicine [15].

The need for a Condition Orientated Regulatory
Network database
Understanding how cell states can be programmed through small
molecules/drugs or conditions by modulating the whole gene
expression system granted us the potential to amend abnor-
mal cells and cure diseases by repositioning existing drugs and
molecules. To visualize how small molecules target TRN and
modulate the gene regulatory system as a whole, this study uti-
lized Connectivity map (Cmap) data [12] and chromatin immuno-
precipitation coupled with sequencing or microarray (ChIP-X)
data from Cistrome [16], where Cmap profiled transcriptomic
changes after specific conditional treatment in cells, and ChIP-
X data documented TF bindings in cells. By combining TF binding
information and calculations of significant expression alterations
of TFs and genes after the conditional treatments, single TF-
centered transcriptional regulatory sub-networks (TRSNs) were
constructed for each differentially expressed TF under each con-
dition. The TRSNs were utilized as the basal units and deposited
in an online platform: Condition Orientated Regulatory Networks
(CORN, https://qinlab.sysu.edu.cn/home).

Results and discussion
Platform overview
CORN is an online platform of Condition Orientated Regulatory
Networks. It is a library of condition (small molecule/drug
treatments and gene knockdowns)-based TRSNs, users are able
to search and browse interested TRN and TRSNs by inputting the
concerning condition, cell line or TF. The resulting condition-
associated TRSN page shows a vast amount of information
including chemical information of the drug/molecule, the TF
responsible for the regulation of the network, genes regulated,
vector and fold change of such regulation as well as a TRSN
diagram (Figure 1). Additional information such as previously
annotated biological pathways of the TF and the drug target gene
are also curated in the platform. Users can browse corresponding

TRN freely by searching through conditions, cell lines, TFs
or target genes that they are interested in. Additionally, our
database also provides further useful information such as
molecular structures and formula of the molecule used in the
corresponding condition, protein structures of the curated target
of the conditional molecule and the differential expressed genes
in the corresponding TRSN. An online tool was also developed
to enable users to identify the closest complimentary TRSNs
with a set of input Differentially Expressed Genes (DEGs), and
thus, the associated condition can be considered as a candidate
to regulate or even cure a certain abnormal cell state (Supple-
mentary Figure S1, see Supplementary Data available online at
https://academic.oup.com/bib). A user guide with tutorial videos
is available on the platform for the platform’s quick and easy
use. TRNs were broken down into single TF-centered TRSNs as
the basal unit of the platform instead of the whole TRN. As the
regulatory relationship between a TF to its downstream genes is
relatively more stable and consistent, they tend to be switched
on and off together as a whole group. On the other hand, the
complete sets of TRNs between different conditions are often
partially altered due to the diverse expression changes of different
TFs and are not turned on and off together as a whole network.
Therefore, it will be more meaningful and useful to provide single
TF-centered TRSNs as the basal unit of the platform. Moreover,
when users search under a specific condition, the result page
would show all the single TF-centered TRSNs (the collection of
all transcription regulators with their associated downstream
genes—TRN).

Comparison over other platforms
CORN associated 1805 different types of specific conditions (small
molecule/drug treatments and gene knockdowns) to 9553 TRSNs
in 25 human cell lines, involving 204 TFs (Figure 1) by the integra-
tion of respective in vivo cell specific ChIP-X data and gene expres-
sion profile. Users can browse corresponding TRNs by search-
ing through conditions, cell lines, TFs or target genes that they
are interested in freely. This database is the first of its kind,
with no similar database sharing the same function and usage.
Database such as Cmap [12] is a transcriptome database recording
transcriptomic regulatory network databases such as RegNet-
work [17] integrate pre-discovered linear regulatory relationships
between genes without the construction of regulatory networks
by computations. GRNdb associated human and mouse TFs and
downstream genes by TRN construction in various normal and
pathological tissues utilizing inferred TF bindings [18], yet both
databases do not focus on drugs/small molecules and genetic
perturbations induced regulatory changes. Many of these drugs or
small molecules were annotated to be associated with certain tar-
get genes and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [19] before. KEGG mainly curates genomic information,
chemical information and signaling pathway information directly
without regulatory network constructions from literatures and
various data source forming an enormous database. CORN is
relatively smaller in terms of information recorded, yet it links
drugs/small molecules and genetic perturbations to TF controlled
gene regulatory networks by computational calculation based on
in vivo TF binding information and gene expression data in respec-
tive cells. Moreover, pathway members in KEGG could be origi-
nated from different regulatory levels, which are not necessarily
expressed simultaneously and thus not necessarily interacting
with each other directly. On the other hand, gene members in
a CORN TRSN are on the same regulatory level and controlled
by the same TF at the same temporal state directly. In other
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Figure 1. Overview of CORN including data source, data processing and features. Transcriptomic data from Cmap [12], ChIP-X data from Cistrome [16]
and chemical information from various database were used as data sources for the construction of CORN. By combining TF binding information and
calculations of significant expression alterations of TFs and genes after the conditional treatments, TRSNs under the effect of different conditions were
constructed. See text for details.

words, the curated drugs/genes in CORN have direct control over
gene members in the respective TRSNs under the same regulatory
level, while members involved in the same KEGG pathway do not
necessarily represent a direct controlling relationship over each
other. Both KEGG pathway and CORN TRSN provide meaningful
information concerning biological interactions, but they are ori-
entated from different view angles. The regulatory relationships
stated in CORN are more specific, while KEGG pathways are
curated to be less explicit but in form of much larger networks,
as dozens of CORN TRSNs can be seen to be joined under the
same KEGG pathway (Figure 2). No doubt that the KEGG path-
way database is extremely valuable to the scientific community;
moreover, CORN will be equally valuable to provide key biological
interaction information from another viewpoint which is more
helpful for real time cell state manipulation.

Validations
To verify whether the TRSN constructed can truly connect con-
cerned drugs with regulated genes, we validated the replicability
of our calculated association between small molecules and reg-
ulated genes by inputting publicly available drug induced tran-
scriptomic change datasets from the Gene Expression Omnibus
database (NCBI GEO) [20] in our matching tool, where the data
were generated by different research groups yet still utilized
the same cell line and drugs in their experiments. For example,
NCBI GEO dataset GSE19638 recorded the transcriptomic changes
induced by treatment of doxorubicin for 6 h in the cell line
MCF7. The transcriptomic change was able to match with TRSN
CN4305 (https://qinlab.sysu.edu.cn/home/report/CN4305) in our
platform with the Forward-Backward greedy algorithm (FoBa)
generated matching score of −0.214. The larger the number of
the matching score represents a closer resemblance between the

TRSN and the differential expression profile. A negative score
represents the inputted differential expressed genes that were in
the same regulatory direction with the reference TRSN. CN4305
was induced by the condition of 6 h daunorubicin treatment
in MCF7 cells. While doxorubicin is just the 14-hydroxylated
version of daunorubicin. Another three more sets of treatment-
induced transcriptomic changes were validated by the matching
tool (Supplementary Table S1, see Supplementary Data available
online at https://academic.oup.com/bib). All matched the respec-
tive treatment drugs and cell lines utilized, proving that there are
meaningful and consistent connections between small molecule
treatments and the regulated genes in the TRSNs computed in our
platform.

Drugs capable to manipulate
epithelial–mesenchymal transition through
regulating TRNs
The epithelial–mesenchymal transition (EMT) is a process by
which epithelial cells lose cell–cell adhesion and gain migratory
ability to transit into mesenchymal cells [21]. As it is a hallmark
process in cancer progression, gaining the ability to control such
cell state conversion means acquiring the power to suppress
cancer. To examine whether there are any small molecules/-
drugs/conditions that possess the potential of rectifying EMT,
three datasets of transcriptomic changes recorded during EMT
downloaded from NCBI GEO [20] were subjected to the TRSN
matching tool. The results are summarized in Table 1 with the
information of EMT dataset GEO accession number, CORN net-
work IDs of TRSN matched, drugs utilized and TFs associated. In
dataset GSE58252, it tracked the gene expression profile during
a SNAIL-induced epithelial-to-mesenchymal transition in breast
cancer cell line MCF-7 [22]. The transcriptomic change matches
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Figure 2. The connection between drugs, annotated drug target genes, annotated KEGG pathways involved and the TRSNs regulated computed by this
study. A Sankey diagram that shows the connection between 141 launched drugs, 177 of their annotated target genes, 25 KEGG pathways that are
involved with the target gene and the 117 TRSNs that are computed to be regulated by such drugs. The connection between previously annotated KEGG
pathways and the TRSNs computed in this study are largely in unconformity. For drugs in clinical trials and preclinical phases, refer Supplementary
Figures S2 and S3 (see Supplementary Data available online at https://academic.oup.com/bib).
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Table 1. Drugs and TRSNs that matched with EMT. EMT datasets from the GEO database matched with the TRSNs in our platform
with positive score are listed. The information of respective GEO Accession number from GEO, Network ID from our platform, as well
as the associated drug name, TF and matching score are listed

EMT dataset TRSN matched Drug TF associated Matching score

GSE58252 CN7356 SAR-245409 EGR1 1.196
GSE58252 CN8833 Idoxuridin APOBEC3B 1.107
GSE58252 CN4212 Gemcitabine KLF4 0.789
GSE58252 CN1612 BRD-K81813927 EZH2 0.777
GSE58252 CN6198 Mitoxantrone ZBTB17 0.705
GSE58252 CN1062 Cerivastatin TAF1 0.597
GSE58252 CN1063 Cerivastatin TAF1 0.597
GSE101809 CN3523 PYGO1 JUND 0.044
GSE101809 CN7916 AZ-20 TP53 0.038
GSE101809 CN5348 Tretinoin TLE3 0.033
GSE101809 CN11 Phorbol-myristate-acetate CEBPB 0.019
GSE136780 CN371 CT-200783 FOS 0.350
GSE136780 CN6477 GSK-2126458 TCF7L2 0.344
GSE136780 CN929 Lovastatin JUND 0.268

with TRNs such as CN7356 and CN8833 in our database. In
CN7356, this TRSN is regulated by the preclinical drug SAR245409
which is a potent PI3K/mTOR pathway inhibitor known to induce
apoptosis [23], yet the detailed mechanism of how SAR245409
works is poorly understood. Here in our database, we have asso-
ciated SAR245409’s activity with the TRSN controlled by TF EGR1
with 103 genes under its regulation (Figure 3). The 103 regulated
genes were enriched with the GO molecular function—‘cadherin
binding’ (Supplementary Table S2, see Supplementary Data avail-
able online at https://academic.oup.com/bib), which plays a key
role in the cell-to-cell adhesion process [24], where EGR1 has been
known to play a key role in degenerating cell-to-cell adhesion [25]
and promote metastasis [26]. Therefore, SAR245409 can demote
cancer progression by inhibiting EMT through EGR-controlled
TRSN. Thus, a more detailed mechanism to explain the efficacy
of the preclinical anti-cancer drug SAR245409 was demonstrated
and provided through CORN, aiding the understanding of molecu-
lar pathology and pharmacology. For CN8833, the APOBEC3B TRN
was associated with a launched drug idoxuridine. The APOBEC3B
was known to be a DNA Cytosine Deaminase that causes DNA
mutations and is the molecular driver for various human cancers
[27–32]. Intriguingly, idoxuridine is a nucleoside analog used as
one of the first antiviral drugs approved in 1963 [33]. It is possible
that the nucleoside analog activity of idoxuridine can inhibit
the DNA Cytosine Deaminase activity of APOBEC3B and has the
potential to prevent cancer development. Here for the first time in
the field, we would like to suggest the repositioning of idoxuridine
from a conventional antiviral to a potential novel drug for cancer
inhibition and prevention.

Potential drugs for COVID-19 treatment
The outbreak of coronavirus disease 2019 (COVID-19) has caused
millions of deaths and suffering worldwide, and our global
society is still in lack of effective treatment strategies to cope
with the pandemic [34]. To screen drugs that have the potential
for COVID-19 treatment, we have retrieved and compared the
transcriptomic profiles between healthy individuals and patients
with severe COVID-19 (GSE164805). All genes and their Log2
fold changes without any pre-set threshold were input into
the CORN matching tool, TRNs with conditions associated with
trichostatin-a (TSA) and BRD-K85133207 (HDAC1-selective) were
matched (Supplementary Table S3, see Supplementary Data

available online at https://academic.oup.com/bib), for which both
conditions are concerned with HDAC inhibition. It is believed
that upon the interaction between the viral spike protein and
the human cell surface receptor ACE2, the HDAC pathway will
be modulated while the HDAC pathway plays an important role
in the pathogenicity of SRAS-CoV-2 and is the putative target
for existing anti-COVID-19 therapeutics [35]. Indeed, TSA has
been found to dock with the catalytic site of the SARS-CoV-
2 main protease with good complementarity and inhibit the
activity and replication of the virus in vitro [36]. Confirming the
practicality and functionality of the CORN matching tool, while
suggesting TSA and BRD-K85133207 to be novel COVID-19 drug
candidates.

Methods
Database implementation
CORN implements a Linux-Apache-MySQL-PHP (LAMP) system.
Data were saved in MySQL database. The web is constructed based
on the powerful PHP framework CodeIgniter, which provides an
Application Programming Interface (API) to connect the web to
MySQL database. JavaScript libraries including jQuery (2.2.0),
jQuery-labelauty and additional visualization plugin-ECharts
were used to perform dynamic web services.

Data retrieval
A total of 11 348 BED files associated with human TF ChIP-X data
were downloaded from Cistrome Data Browser [16]. Transcrip-
tomic data originated from 25 200 interference methods (19 811
small molecule compounds, 314 biological products, shRNA or
cDNA, etc.) targeting 5075 target genes in human cell lines were
downloaded from the Cmap project [12]. Chemical and physical
information of different drugs and molecules were downloaded
from The Drug Repurposing Hub [37], BD2K-LINCS Data Coordi-
nation and Integration Center [38], LINCS data portal [39], Pub-
Chem [40], ZINC [41], HMS LINCS [42] and CHEMBL [43] (Sup-
plementary Table S4, see Supplementary Data available online
at https://academic.oup.com/bib). Biological pathways associated
with the drug target gene and the TF were retrieved from KEGG
[19]. Transcriptomic data for validations and drug screening was
downloaded from NCBI GEO [20].
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Figure 3. EGR1 TRSN induced by preclinical drug SAR245409. 103 genes are under the regulation of SAR245409 and EGR1, which are enriched with
the GO molecular function annotation—‘cadherin binding’. For details, refer text and the TRSN report in CORN (https://qinlab.sysu.edu.cn/home/
report/CN7356).

Data processing
After matching the transcriptomic data and ChIP-X data, 25
human cell lines were found to be included in both types of
data. Thus, data originated from these cell lines were utilized for
further data processing. ChIP-X data from the same cell line were
merged and classified under the same BED file, while overlapping
regions in a BED file were merged. Then, the merged regions in
BED files were sorted according to their positions at chromosomes
they originated from. An R package Limma [44] was used to
conduct differential expression analyses on the transcriptomic
data from Cmap to obtain Log2-transformed expression changes
and adjusted P-values for each gene under different conditional
treatment (using functions of lmfit and eBayes). Genes were
considered differentially expressed with the absolute Log2 fold
change value greater than 0.5 and the adjusted P-value less than
0.01. GO enrichment test was done by Protein Analysis Through
Evolutionary Relationships Overrepresentation Test with default
settings using Fisher’s exact test and the threshold of Benjamini–
Hochberg False Discovery Rate correction was set to 0.05 [45].

TRSN constructions
Significant differential expressed data resulting from Limma
(absolute value of Log2 fold change >0.5 and adjusted P-value
<0.01) were selected to perform the following processes. ChIP-X
and transcriptomic data from the same cell line were then paired
and subsequent to target analysis by integration of both data with

BETA [46]. Log2-transformed expression changes and adjusted P-
values of all genes reported by Limma were parsed into BETA
compatible format. Condition-specific TRNs were constructed
using BETA 1.0.7 with each pair of ChIP-X and transcriptome
data, linking each differential expressed TF to their respective
200 most significant up-regulated and 200 most down-regulated
genes under each specific condition into two TRSNs (one set of
up-regulated genes containing TRSN, another set of TRSN with
down-regulated genes). In this process, the parameters of BETA
were set as basic, −k LIM, −da 200 utilizing genome information
from Homo sapiens (human) genome assembly GRCh38 (hg38). As
a result, a total number of 9553 condition-specific TRSNs were
generated.

Matching tool construction
9553 TRNs were then merged into one single matrix A. Among
these 9553 TRSNs, 114 TRSNs were paired from different regu-
latory directions (up-regulated and down-regulated) of the same
condition-specific TF, which were then merged into 57 columns.
Afterwards, they were grouped with 9439 single regulatory direc-
tion TRSNs, these TRSNs form a matrix A with 10 061 rows (genes)
and 9496 columns (condition-specific TRSNs). Each column rep-
resents a TRSN j controlled by one TF k under a certain condition
l, and each row is a gene i that probably regulated by those TFs. If
gene i is regulated by TF k under condition l, Aij is the expression
Log2 fold change of gene i under condition l, otherwise, Aij is equal
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to 0. Expression data inputted by users form matrix B. It can be any
transcriptomic changes (Log2 fold changes), such as comparison
between patients and corresponding control individuals, but it
must only contain two columns, Symbol and LogFC.

To identify TRNs that best match transcriptome changes
inputted by users, a sparse learning model was applied based
on the assumption that a small number of the condition-
specific TRSNs will be selected if they are dysregulated in the
transcriptomic changes inputted by the users. In particular, b
is the data vector in matrix B, and x is the coefficient vector
representing the association between TRSNs and the inputted
transcriptomic changes. Then, the sparse learning model for
inferring its perturbed TRNs can be formulated by

min
∥
∥
∥Ax − b

∥
∥
∥

2

s.t. card(x) ≤ s,

where card(x) denotes the cardinality (i.e. the number of nonzero
coefficients) of variable vector x, and s is the given sparsity that
represents the number of selected TRSNs. s was arbitrarily set
as 10 in this study to search up to 10 most correlated TRSNs
for each input, with the generation of respective matching score.
Adaptive FoBa was used to find best matched TRSNs, as the
traditional ordinary least squares method does not pay much
attention to the sparsity of the results in the optimization process,
while FoBa possesses superior performance and computational
feasibility over other greedy algorithms [47]. The matching score
is used to reflect the contribution of different TRSNs fitting into
the inputted b. In short, the larger the magnitude of the resulted
score would represent a closer resemblance between the TRSN
and the differential expression profile. A negative score would
represent the regulatory direction of the inputted differential
expressed genes that were in tune with the regulatory direction
of the reference TRSN. If the readers possess a set of DEGs
induced by an unknown cause, exploring matching TRSNs with
negative scores would be useful for these readers. It is because
the transcriptional controller/condition of the negatively scored
TRN could cause a similar expression profile change in the same
regulatory direction as their inputted DEGs (see ‘Validations’ in
Results and Discussions), which means they might also be the
potential causes of such inputted differential expression. As for
positive scores, they represent the inputted DEGs were in the
counter regulatory direction to the matched TRSN. Searching
condition oriented TRSNs with positive scores would be helpful
for readers who are seeking conditions/drugs with the therapeutic
potential for counteracting the expression changes induced by a
pathological state (see ‘Potential drugs for COVID-19 treatment’
and ‘Drugs capable to manipulate EMT through regulating TRNs’
in Results and Discussions).

Conclusion
The online platform of condition-associated regulatory networks,
CORN curated 9553 condition triggered transcription regulatory
sub-networks, associated to 1805 specific conditions, 204 TFs and
25 human cell lines. Researchers can search and browse TRNs
inferred from experimental results by selecting through different
interested conditions. By linking and curating specific conditions
to the responsive TRSNs, CORN enables the scientific commu-
nity to perceive how TRSNs are altered and controlled by condi-
tions in an organized manner for the first time while gain more
knowledge about abnormal cell states and diseases. Utilizing the

transcriptional change matching tool from CORN, several drugs
were found to be potentially repositioned for appending patho-
logical cell states such as cancer and COVID-19. For example,
SAR245409 is possible to demote cancer progression by inhibiting
EMT through EGR-controlled TRSN, while idoxuridine is likely to
inhibit the DNA Cytosine Deaminase activity of APOBEC3B and
has the potential to prevent cancer development. TSA and BRD-
K85133207 have the potential to modulate the HDAC pathway dur-
ing SRAS-CoV-2 infection, reducing the pathogenicity of COVID-
19. This platform can be the foundation and reference material
for scientists who aim to control TRNs and cell states with small
molecules or manipulation of various conditions. It provides key
resources for the scientific community to study the relationships
between conditions and cell states in terms of gene regulations.
By demonstrating with examples how various conditions can
regulate TRN, our database has a wide range of contribution
ranging from execution of condition-based cell type conversion
to appending pathological cell states.
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