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A B S T R A C T

As an eco-friendly transportation option, bike-sharing systems have become increasingly popular
because of their low costs and contributions to reducing traffic congestion and emissions
generated by vehicles. Due to the availability of bikes and the geographically varied bike flows,
shared-bike operators have to reposition bikes throughout the day in a large and dynamic
shared-bike network. Most of the existing studies cluster bike stations by their geographical
locations to form smaller sub-networks for more efficient optimization of bike-repositioning
operations. This study develops a new methodological framework with a demand-driven ap-
proach to clustering bike stations in bike-sharing systems. Our approach captures spatiotemporal
patterns of user demands and can enhance the efficiency of bike-repositioning operations. A
directed graph is constructed to represent the bike-sharing system, whose vertices are bike
stations and arcs represent bike flows, weighted by the number of trips between the bike
stations. A novel demand-driven algorithm based on community detection is developed to
solve the clustering problem. Numerical experiments are conducted with the data captured
from the world’s largest bike-sharing system, consisting of nearly 3000 stations. The results
show that, with CPLEX solutions as the benchmark, the proposed methodology provides high-
quality solutions with shorter computing times. The clusters identified by our methodology are
effective for bike repositioning, demonstrated by the balance of bike flows among clusters and
geographic proximity of bike stations in each cluster The comparison between clusters found in
different hours indicates that bike sharing is a short-distance transportation mode. One of the
key conclusions from the computational study is that clustering bike stations by bike flow in
the network not only enhances the efficiency of bike-repositioning operations but also preserves
the geographic characteristics of clusters.

. Introduction

Bike-sharing systems (BSSs) have increasingly emerged to fill gaps in today’s transportation networks. BSSs provide an alternative
nd lower-cost solution for short-distance transportation. These systems contribute to reducing traffic congestion and pollution
aused by motorized transportation. As one of the largest BSSs in the world, CitiBike (New York) decreased more than 2.9 million
ounds of carbon emissions in June 2018 (Negahban, 2019). Due to the lower travel cost and environmental benefits of BSSs, as of
020, there are more than 2000 bike sharing systems around the world and approximately 17,792,000 bikes in service (Shui and
zeto, 2020).
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To attract more users, many bike sharing companies focus on scale expansion rather than profits, and release large quantities of
hared bikes in a short time (Hasija et al., 2020; Sun et al., 2020). The number of bikes ranges from less than one hundred to many
housands in some cities like Hangzhou (78,000 bikes and 4,198 bike stations) and Paris (20,600 bikes and 1,338 bike stations)
Alvarez-Valdes et al., 2016). BSSs can be categorized into two classes: station-based BSSs (SBBSSs) and free-floating BSSs (FFBSSs).
n a SBBSS, users can pick up and drop off bikes only at fixed-location bike stations. Such a network can be depicted by a graph
ith nodes representing bike stations. On the other hand, in FFBSSs, bikes can be picked up and dropped off anywhere. In some

tudies, nodes are also considered in FFBSSs, where these nodes include regular bike docks and locations where customers rent or
eturn bikes (Pal and Zhang, 2017). In this study, we focus on SBBSSs and construct a graph to represent the bike station network
BSN).

The success of a bike-sharing system depends on its ability to ensure the availability of bikes and parking spaces at the right bike
tations at the right times (Albiński et al., 2018). However, due to the imbalanced bike flows during the day, the availability of bikes
nd user demands are often mismatched (Dell’Amico et al., 2018). For example, many users may choose to ride bikes from a bus
tation to a residential area after work. Subsequently, bikes originally available at the bus station would be retrieved and returned
n the residential area. Future users may, therefore, not be able to access the bikes. To maintain a good service level, shared-bike
perators need to determine optimal truck routes for bike repositioning (BR). The availability of bikes at different bike stations
nd the cost of repositioning operations are the primary concerns. Typically, in urban areas, the size of the BSN is large. As the
vailable resources are limited (e.g., bikes, repositioning trucks and truck capacity, budget for operating the BSS), it is challenging
or the operators to reposition bikes efficiently (Haider et al., 2018; Raviv and Kolka, 2013; Schuijbroek et al., 2017). For instance,
n Paris, repositioning trucks travel long distances between large bike stations near train stations or universities (Legros, 2019).
he repositioning operation exhibited a low efficiency, but imposed a high cost. In this study, we aim to decompose the large BSN

nto smaller sub-networks for BR. A clustering approach based on community detection is proposed to achieve the goal, thereby
acilitating the logistics and operations management related to BR in BSSs.

Different from other transportation and logistics networks, in our research, the connectivity between the bike stations is defined
y not only the road infrastructure (i.e., roads and bike lanes), but also bike trips. Instead of considering distances between bike
tations and the number of bikes available at each station as in the majority of existing studies, our research utilizes bike flows
etween stations. Furthermore, the objective of most of the existing mathematical models is to minimize the storage cost or total
istances between bike stations in clusters, but has not considered the characteristics of BSSs as a transportation mode. The existing
ethods are mostly applied to smaller-scale instances of BSSs with the number of bike stations (NBS) ranging from tens to hundreds.

n real-life large-scale BSSs (e.g., NBS ≥ 1000), decomposition of the network is required for practical deployment of the solution
ethod.

Thus, there are several open questions for this research: (1) How should bike stations be clustered for effective BR? (2) What
re the optimal clusters for BR? (3) Do clusters suggested by user demands help the analysis of travel patterns in a large-scale BSS?
o address these three questions, this paper aims to establish a new demand-driven clustering framework for BSNs and BR. The
bjectives are listed below:

• To utilize user trip information for effective BR in large BSNs;
• To develop a mathematical model and the required solution method to determine optimal clusters of bike stations for effective

BR; and
• To demonstrate the effectiveness and efficiency of our solution method by conducting a case study of the world’s largest BSN.

Referring to the objectives of this research, we develop a demand-driven approach to cluster bike stations in BSNs for
nderstanding spatiotemporal patterns of user demands, thereby enhancing the efficiency of BR operations. First, a directed graph
s constructed to represent the BSN, whose vertices are bike stations and arcs represent bike flows, weighted by the number of trips
etween the bike stations. Second, we propose a mixed integer programming (MIP) model to minimize the difference between the
nflow and outflow of bikes (DIOB) for each cluster in the BSN. A novel demand-driven algorithm based on community detection is
eveloped to solve the problem. A computational study is conducted to assess the effectiveness and computational efficiency of our
olution approach. Third, we carry out an analysis with data captured from the world’s largest BSS, which consists of more than
000 bike stations. The clusters identified from bike trips during the morning peak and the evening peak are compared and the
haracteristics of clusters (e.g., the distances between bike stations in the same cluster and the numbers of trips staying within and
raveling out of each cluster) are presented.

This paper has three main contributions that distinguish our research on the operations of BSNs and BR from the existing studies,
hich are to be presented as follows.

(i). This research focuses on a different problem for BR. Contrary to most of the existing studies on BR, which focus on bike
loading and unloading problems formulated as variants of VRP, we study the bike station clustering problem. We propose a
demand-driven clustering framework for BSNs, considering the directions and amounts of user demands. The clusters detected
by our approach exhibit a combination of essential characteristics of BR, the balance of bike flows and geographical proximity.
These characteristics are mostly considered as the key objectives of BR (Szeto and Shui, 2018).

(ii). We introduce a definition of bike station cluster and a novel mathematical formulation, which captures user bike flows from
BSS operational data, for BR planning. The objective of our model is different from traditional ones, which consider traveling
distance or operational costs, but incorporates the user trip information for clustering. A modified fast unfolding algorithm
(MFUA), designed based on network theory, is proposed to deliver solutions efficiently for practical use. Our approach is
expected to be effective in preventing oversupply of bikes and long-distance repositioning. Consequently, the service level of
a BSS, which is an important measure of the success of a BSS (Kabra et al., 2019), can be improved.
2
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Table 1
Abbreviations used in this paper.
BSS Bike Sharing System
BSN Bike Station Network
BR Bike Repositioning
BRP Bike Repositioning Problem
DDC Demand-driven Clustering
DIOB Difference between Inflow and Outflow
FUA Fast Unfolding Algorithm
LPA Label Propagation Algorithm
MCESS Minimum Cut into Equal-Sized Subsets
MFUA Modified Fast Unfolding Algorithm
NBS Number of Bike Stations
VRP Vehicle Routing Problem

(iii). We demonstrate the effectiveness and efficiency of our proposed methodology with a case study of the world’s largest BSS.
The results show the performance of the proposed approach and the effectiveness of clustering by bike trip records as an
alternative to determining clusters of bike stations. Taking into account the interdependencies among user demands at service
points, this study illustrates the travel patterns of bike users by detecting representative clusters in different time periods.

Table 1 presents the abbreviations used in this paper.
The rest of this paper is organized as follows. Section 2 presents a review of the existing literature on clustering for BSNs and BR.

ection 3 presents the problem description and model formulation. Section 4 describes the proposed community detection approach
o clustering the bike stations. In Section 5, we report on the computational efficiency of the proposed procedure. A case study of
he Hangzhou public BSS is conducted to illustrate the performance of our solution framework. The paper is concluded in Section 6
ith a summary of the research and a discussion about the modeling issues and several managerial implications.

. Literature review

To distinguish our work from previous literature, the existing research with the application of clustering techniques for BR in
SSs and the solution methodologies for managing operations in large-scale BSSs is reviewed.

Clustering techniques applied for BSSs mainly focus on the analysis of travel patterns, particularly the relationships between bike
rips and various exogenous variables. Froehlich et al. (2009) analyze the Barcelona’s BSS by dendrogram clustering and uncover the
aily demand patterns and behavioral patterns in different areas. Zhu and Diao (2020) group bike stations based on daily temporal
ravel patterns by fuzzy clustering. Gervini and Khanal (2019) apply hierarchical clustering to explore the user demand pattern based
n the characteristics of the bike trips. Du et al. (2019) investigate the bike trip patterns around subway stations by hierarchical
lustering. Their proposed clustering-based time-domain analysis method is tested with the data of Mobike shared bikes in Shanghai.
xisting studies apply clustering techniques for a better understanding of the bike usages with geographic proximity, demographic
haracteristics, users’ characteristics, and weather conditions; however, demand clustering has not been formally applied to BR in
he literature. In our research, demand clustering by community detection is successfully applied to a large-scale real-world network
or more efficient management of the BSS.

Previous studies on clustering for BR are still inadequate. Forma et al. (2015) develop a 3-step heuristic for the BR problem. An
IP model for clustering bike stations is proposed in the first step, considering the bike inventory level and geographic information.
he repositioning routing, which allows vehicles to travel between clusters, is determined in the second and third steps. Their
lusters are constructed to decompose the large network into smaller sub-networks. Schuijbroek et al. (2017) propose a cluster-first
oute-second heuristic to determine the service level requirements at each bike station and the vehicle routes. Their clustering
roblem simultaneously considers the service level requirement and approximate routing costs by a new maximum spanning star
pproximation. However, the user demands in BSSs have not been well considered for clustering bike stations for BR. To our best
nowledge, Lahoorpoor et al. (2019) is the first and only existing work on bike station clustering for BR, where the origin–destination
OD) information is utilized. They present a similarity measure method based on the trips between stations to increase high intra-
luster trips, using a hierarchical agglomerative clustering method. A case study is conducted on a real-world BSS, which consists
f 582 bike stations. From their results, the numbers of bike stations in each cluster range from 14 to 58. However, the clustering
roblem they study is for static BR, while ours attempts to cluster bike stations dynamically according to recent bike trips. Existing
esearch shows that solving BR problems by clustering bike stations in BSN could successfully enhance the scalability of the solution
ethod.

The bike repositioning problem (BRP) has attracted most of the researchers’ interest in recent years. Compared to traditional
ogistic problems, there are three distinctive characteristics of BRPs. First, bikes in BRPs are different from goods in traditional
ogistics problems, as bikes are ridden by cyclists as means of transportation. Bikes are mobilized by both users and the operator,
hile goods are delivered only by the operators. Second, the imbalance between bike supply and user demand results from the
vailability of bikes, numbers of docks at bike stations, and bike flows. Third, bike stations are both demand points and supply
oints in BSNs, while depots are always different from service points in typical logistics networks. Thus, the availability of bikes
3
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Fig. 1. A two-phase approach to bike repositioning operations.

can influence the users’ travel behavior and also the demands for bikes and docks. All of these characteristics of BSSs motivate us
to utilize bike trip information to determine better clusters to optimize decisions in BRPs.

Most of the existing studies consider BRPs as vehicle routing problems (VRPs) or traveling salesman problems (TSPs). Similarly,
the objectives of BRPs focus on the efficiency and impacts of BR strategies. The objectives include minimization of unmet user
demand or overall user dissatisfaction (Alvarez-Valdes et al., 2016; Forma et al., 2015; Haider et al., 2018; Legros, 2019),
minimization of travel cost or total cost (Chemla et al., 2013; Dell’Amico et al., 2018; Erdoğan et al., 2015; Zhang et al., 2017),
minimization of penalty costs, traveling time, or service time (Ho and Szeto, 2014; Li et al., 2016; Raviv et al., 2013; Du et al.,
2019), and minimization of the maximum tour length or total traveling distance (Forma et al., 2015; Schuijbroek et al., 2017). Most
studies on BRPs adopt the above objectives, as the efficiency or accessibility of a BSS is a key performance measure.

While the literature on BRP and demand analysis for BSSs is extensive (Albiński et al., 2018), only a few studies focus on the
analysis and operations management of large-scale BSSs. Shaheen et al. (2011) conduct a survey to investigate the usage pattern
of the Hangzhou BSS. They find that people use the BSS after riding other transportation modes (e.g., bus, car, and taxi). The most
frequently-used bike stations are closest to either home (40%) or work (40%). Kabra et al. (2019) analyze how the accessibility
and availability of bikes influence the performance of a BSS. The estimates are obtained using data from the Vélib’ system in Paris,
which is the largest BSS out of China. Almost 80% of rides traveled less than 300 m per trip. 10% more bikes at bike stations could
induce demands by 12.211%. Their study highlights that large-scale BSSs need to improve the service level. Yang et al. (2019)
develop a data-driven simulation-based approach for predicting users’ demand in BSSs and evaluate its effectiveness with data also
from the Hangzhou BSS. In these studies, the focuses are mainly on understanding the user demands and travel behaviors; however,
the analyses have not been further utilized for clustering bike stations.

Community1 structure theory has been applied in transportation systems. Mesa-Arango and Ukkusuri (2015) explore the problem
of clustering demand in freight logistics networks by community detection. Du et al. (2018) consider delay propagation among
airports and apply a community detection algorithm to decompose a large aviation network into several sub-regions. Van Nguyen
et al. (2019) develop a two-stage approach by integrating data mining and community structure theory to determine optimal
locations and service areas of dry ports in a large-scale inland transportation system. For BSSs, Zhou (2015) applies community
detection on a massive dataset of the BSN in Chicago to illustrate the bike flow dynamics on weekdays and weekends as well as
different travel patterns by subscribers and other users. Zhang and Meng (2019) develop a bike allocation strategy in a competitive
free-floating bike sharing market based on community structure theory. However, the existing research has not formally considered
characteristics of bike flows to detect communities and apply such approach, for the purpose of BR.

In summary, the majority of the research on BR focuses on the daily repositioning operations which are variants of VRPs or TSPs.
There are a few studies which apply clustering techniques for BR. However, there lacks a more formal definition of optimal clusters
and bike user behaviors are rarely considered. Our research distinguishes from the existing studies as follows. First, we propose a
novel optimization model, powered by large volumes of user trip data, for optimal clustering for BR operations. Second, MFUA
is proposed to tackle large-scale real-world instances. Third, our computational experiments demonstrate that the optimal clusters
identified by our proposed solution method preserve the geographic proximity between bike stations, which is an essential element
in BR.

3. Problem definition and model formulation

In practical BR operations, when the coverage of bike stations is large and the user demands are high, the operator of the BSS may
need to deploy multiple trucks for BR in different regions. Thus, BSS operators typically consider their BR operations a two-phase
problem. As Fig. 1 illustrates, the first step is to cluster the bike stations such that each cluster can be served by a truck and the
second step is to deploy trucks for repositioning of bikes (i.e., loading and unloading operations). In this paper, we focus on the
first problem – bike station clustering – and will refer the reader to the studies on the second problem of bike loading & unloading,
which have been extensively studied as variants of VRPs and solved by various solution methods (e.g., Ho and Szeto, 2014; Li et al.,
2016; Dell’Amico et al., 2018; Raviv and Kolka, 2013; Du et al., 2019).

This paper proposes a demand-driven approach for clustering bike stations in a large-scale BSN for improving the efficiency of
BR. A mathematical model to minimize the DIOB by user demands is developed based on the proposed directed network. Due to

1 The community termed in this paper is also referred as the cluster.
4
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Fig. 2. Dynamic bike station clustering for bike repositioning.

dynamic demands in various locations, the operator needs to rebalance bike supply and user demands. The different clusters of bike
stations, optimal routes within each cluster, and also the loading/unloading activities for bike repositioning should be determined
based on the whole BSN. Particularly for dynamic bike repositioning, trucks are supposed to serve for a small number of bike
stations. Long travel distances for BR shall be avoided. On the other hand, the user demands shall also be a critical factor in BR
operations, as such demands influence the number of bikes that can be loaded to the truck at each station. All of the above are
important factors that determine the effectiveness of a BR plan.

A key challenge faced by the operator is how to determine optimal bike station clusters for BR. Our research proposes a clustering
method driven by the estimated bike flows in the time period. The algorithm determines the clusters by minimizing the difference
between the inflow and outflow of bikes in each cluster. The operator can, therefore, allocate repositioning trucks to these clusters.
By doing so, the availability of bikes in each cluster is expected to be more stable. Second, the travel distance of a bike trip is
typically short (Hasija et al., 2020). Therefore, clustering by the volumes of user trips between bike stations can ensure both the
matching of supply and demand and also the geographic proximity between stations within the same cluster.

Several constraints should be considered for clustering bike stations. For practical task assignments, each repositioning truck
serves bike stations of exactly one cluster (Dell’Amico et al., 2014); that is, a truck will not visit any bike stations in other clusters
(see Fig. 2). It is common in practice and helps to avoid repeated services. The number of repositioning trucks, the required time for
bike loading and unloading at each station, and the service radius of the repositioning trucks impose upper bounds on the number
of bike stations that can be assigned to a cluster.

In this work, we consider a directed network 𝐺 = (𝑆, 𝐴, 𝑊 ), 𝑊 ∶ 𝐴 → R+∪0, whose vertices are bike stations and arcs represent
bike flows. In our proposed framework, we refer demands to the bike trips actually realized as these trips change the locations of the
bikes such that repositioning is required. There could be unsatisfied demands due to unavailability of bikes; however, these demands
would not change the locations of the bikes such that repositioning operations are not affected. The set of vertices is denoted by 𝑆,
indexed by 𝑠, 𝑟 ∈ 𝑆, and the set of arcs is denoted by 𝐴, indexed by (𝑠, 𝑟). Arc (𝑠, 𝑟) indicates that the user bike flow from station 𝑠
to station 𝑟 exists and is weighted by the number of trips in a time period along the direction 𝑤𝑠𝑟 = 𝑊 (𝑠, 𝑟). In our case study to
be presented in Section 5, the time period is set to the hour right before the time of making bike station clustering decisions. The
rationale is that we aim to maintain a relatively stable total number of bikes within a cluster such that the supply of bikes to the
stations with shortages can be self-sustained; repositioning trucks are not required to travel to another cluster to pick up bikes to
satisfy the demands in its own service region. This can be achieved by minimizing DIOB resulting from the previous period. The
choice of the length of a period shall be long enough to accommodate sufficient bike trips for estimating the bike flows but, at
the same time, not too long for capturing the time-varying bike demands and flows. In many bike systems, the length of a pricing
interval is usually set to 15 min (e.g., (Metropolradruhr, 2021)), 30 min (e.g., Meituan Bike, 2021; Locobike, 2021; Santander
Cycles, 2021), or 45 min (e.g.,Citibike, 2021; Bay Wheels, 2021). The length of the pricing interval can reflect the typical ride time
of a user in the region. The length of a time interval for BR planning shall be set no less than the typical ride time. Furthermore,
the time-varying demand patterns are typically reflected on an hourly basis. Thus, in our case study, we set the length to be one
hour. Nevertheless, our solution methodology is general for other choices of time interval lengths.

We denote 𝑛𝑚𝑖𝑛 and 𝑛𝑚𝑎𝑥 the minimum and maximum numbers of bike stations that can be assigned to a cluster. 𝑛𝑚𝑖𝑛 can be
interpreted as the minimum number of bike stations that a repositioning truck has to service for a reasonable utilization, due
to the limited number of trucks. 𝑛𝑚𝑎𝑥 can be interpreted as a limit such that repositioning trucks are not overloaded and the
repositioning operations are not delayed. Our model is generic in that, even if there are no bounds on the number of bike stations
in each cluster, 𝑛𝑚𝑖𝑛 and 𝑛𝑚𝑎𝑥 can be set to 0 and |𝑆|, respectively. The set of clusters is denoted by 𝐶. Note that ∪ 𝑐 = 𝑆 and
5
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Table 2
Notations used in this paper.
Sets & Parameters

𝐺 = (𝑆, 𝐴, 𝑊 ) A directed graph which represents the bike station network
𝑆 Set of vertices (bike stations)
𝐴 Set of arcs (connections between bike stations)
𝐶 Set of clusters
(𝑠, 𝑟) Arc from node 𝑠 to node 𝑟
𝑊 (𝑠, 𝑟) or 𝑤𝑠𝑟 Amount of bike flow from node 𝑠 to node 𝑟
𝑛𝑚𝑖𝑛 Minimum number of bike stations in a cluster
𝑛𝑚𝑎𝑥 Maximum number of bike stations in a cluster

Decision variables
𝑥𝑐𝑠 1 if vertex 𝑠 is assigned to cluster 𝑐; 0 otherwise.
𝑦𝑐 1 if cluster 𝑐 is formed; 0 otherwise.
𝑄 Absolute difference between inflow and outflow of bikes to and from

the cluster, summing over all clusters
𝑄𝑐 Absolute difference between inflow and outflow of bikes to and from cluster 𝑐

𝑐1 ∩ 𝑐2 = ∅ ∀𝑐1, 𝑐2 ∈ 𝐶, 𝑐1 ≠ 𝑐2. Table 2 summarizes the notations used in this paper. Our formulation includes the following decision
ariables:

𝑥𝑐𝑠 =
{

1 if vertex 𝑠 is assigned to cluster 𝑐,
0 otherwise;

𝑦𝑐 =
{

1 if cluster 𝑐 is formed,
0 otherwise.

Based on the problem characteristics, the demand-driven bike station clustering problem can be formulated as follows:

min𝑄 =
∑

𝑐∈𝐶
|

∑

𝑠,𝑟∈𝑆
𝑤𝑠𝑟

(

𝑥𝑐𝑟 − 𝑥𝑐𝑠
)

| (1)

ubject to
∑

𝑐∈𝐶
𝑥𝑐𝑠 = 1 ∀𝑠 ∈ 𝑆 (2)

∑

𝑠∈𝑆
𝑥𝑐𝑠 ≤ 𝑀 ⋅ 𝑦𝑐 ∀𝑐 ∈ 𝐶 (3)

∑

𝑠∈𝑆
𝑥𝑐𝑠 ≤ 𝑛𝑚𝑎𝑥 ∀𝑐 ∈ 𝐶 (4)

𝑛𝑚𝑖𝑛 ⋅ 𝑦𝑐 ≤
∑

𝑠∈𝑆
𝑥𝑐𝑠 ∀𝑐 ∈ 𝐶 (5)

𝑥𝑐𝑠 ∈ {0, 1} ∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶 (6)

𝑦𝑐 ∈ {0, 1} ∀𝑐 ∈ 𝐶 (7)

here 𝑀 is a sufficiently large number.

Objective (1) is to minimize the absolute difference between inflow and outflow of bikes to and from the cluster, summing over
ll clusters. In Objective (1), the term

𝑤𝑠𝑟
(

𝑥𝑐𝑟 − 𝑥𝑐𝑠
)

=

⎧

⎪

⎨

⎪

⎩

𝑤𝑠𝑟 if vertex 𝑟 is in cluster 𝑐 and vertex 𝑠 is not,
−𝑤𝑠𝑟 if vertex 𝑠 is in cluster 𝑐 and vertex 𝑟 is not,
0 if both are in cluster 𝑐 or both are not in cluster 𝑐.

Thus, the term |

∑

𝑠,𝑟∈𝑆 𝑤𝑠𝑟
(

𝑥𝑐𝑟 − 𝑥𝑐𝑠
)

| measures the sum of inflows and outflows of bikes to and from Cluster 𝑐, i.e., DIOB.
onstraints (2) state that each bike station is allocated to only one cluster. Constraints (3) state that a cluster is formed only when
here is more than one station in a cluster. Constraints (4) and (5) require that the number of bike stations in each cluster should
e within the bounds. Constraints (6) and (7) define the domain of variables 𝑥𝑐𝑠 and 𝑦𝑐 . To summarize, the model aims to allocate
tations to clusters such that the total absolute difference between inflow and outflow of bikes to and from each cluster is minimized,
here the minimum and maximum numbers of bike stations in a cluster are respected.

The above mathematical model is a non-linear MIP due to the non-linearity of Objective Function (1). Linearization techniques
re applied to the model to obtain the following linear MIP:

min𝑄 =
∑

𝑧𝑐 (8)
6

𝑐∈𝐶
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subject to
∑

𝑐∈𝐶
𝑥𝑐𝑠 = 1 ∀𝑠 ∈ 𝑆 (9)

∑

𝑠,𝑟∈𝑆
𝑤𝑠𝑟 ⋅

(

𝑥𝑐𝑟 − 𝑥𝑐𝑠
)

≤ 𝑧𝑐 ∀𝑐 ∈ 𝐶 (10)

−
∑

𝑠,𝑟∈𝑆
𝑤𝑠𝑟 ⋅

(

𝑥𝑐𝑟 − 𝑥𝑐𝑠
)

≤ 𝑧𝑐 ∀𝑐 ∈ 𝐶 (11)

∑

𝑠∈𝑆
𝑥𝑐𝑠 ≤ 𝑛𝑚𝑎𝑥 ∀𝑐 ∈ 𝐶 (12)

∑

𝑠∈𝑆
𝑥𝑐𝑠 ≤ 𝑀 ⋅ 𝑦𝑐 ∀𝑐 ∈ 𝐶 (13)

𝑛𝑚𝑖𝑛 ⋅ 𝑦𝑐 ≤
∑

𝑠∈𝑆
𝑥𝑐𝑠 ∀𝑐 ∈ 𝐶 (14)

𝑥𝑐𝑠 ∈ {0, 1} ∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶 (15)

𝑦𝑐 ∈ {0, 1} ∀𝑐 ∈ 𝐶 (16)
𝑧𝑐 ≥ 0 ∀𝑐 ∈ 𝐶 (17)

This bike station clustering problem is computationally challenging, as shown in Proposition 1. Thus, a computationally efficient
solution methodology is proposed in Section 4.

Proposition 1. The demand-driven bike station clustering problem is NP-hard.

Proof. We consider a polynomial time reduction from a NP-hard problem, the Minimum Cut into Equal-Sized Subsets problem
(MCESS) (Garey et al., 1976): Given a graph 𝐺(𝑆,𝐴) and positive integer 𝑢, is there a partition 𝑐1 and 𝑐2, which satisfies 𝑐1 ∪ 𝑐2 = 𝑆
with 𝑐1 ∩ 𝑐2 = ∅, |𝑐1| = |𝑐2|, and |(𝑠, 𝑟) ∈ 𝐴 ∶ 𝑠 ∈ 𝑐1, 𝑟 ∈ 𝑐2| ≤ 𝑢.

Given an instance of the MCESS problem, we define an instance of our Demand-Driven Clustering problem (DDC) with a directed
network 𝐺 = (𝑆, 𝐴, 𝑊 ). If |𝑆| is an odd number, there is no feasible solution. If |𝑆| is an even number, we set 𝑤𝑖𝑗 = 1,∀𝑤𝑖𝑗 ∈ 𝑊
and 𝑛𝑚𝑖𝑛 = 𝑛𝑚𝑎𝑥 = |𝑆|∕2. Such settings reduce the MCESS problem (Garey et al., 1976) to the DDC problem. Then, if the optimal
value of the DDC problem is not greater than 𝑢, the answer of MCESS problem is ‘YES’ and vice versa. The MCESS problem is now
interpreted as a DDC problem. Thus, the DDC problem is NP-hard. □

4. Solution methodology

In this section, we present our proposed modified fast unfolding algorithm (MFUA) for solving the clustering problem presented
in Section 3. Community structure in the real-world network was defined by Girvan and Newman (2002). It is one common
characteristic of complex networks (Zhang and Meng, 2019). It reveals how complex networks are composed of relatively
independent and interlaced sub-networks. The connections between the vertices in each community are close, while the connections
between communities are relatively sparse. The community structure makes the generation and evolution of system much quicker
and more stable than if the system is unstructured (Zhou et al., 2012; Mesa-Arango and Ukkusuri, 2015). Considering a BSN as
a complex network with bike stations and bike flows being vertices and arcs, respectively, the BSN also exhibits the community
structure. As a short-distance transportation mode, shared bikes are typically distributed within a fixed area since users do not use
bikes for long-distance travels. While bike stations are connected by road infrastructure, their connectivity in our graph is defined
by user demands.

To deliver practical solutions, we propose MFUA for tackling the community detection problem. Blondel et al. (2008) propose
a fast unfolding algorithm (FUA), which is developed based on modularity optimization, to uncover the community structure in an
undirected graph and examine the effectiveness of their approach in several large-scale networks. Fortunato (2010) discusses the
principles and strengths of FUA and its good performance on large networks. Compared to the other known community detection
methods (e.g., Newman, 2004), FUA can be applied in community detection of weighted undirected networks more efficiently. For
instance, compared with the Label Propagation Algorithm (LPA) (Raghavan et al., 2007), FUA is more appropriate to be applied
to BSNs than LPA. The main idea of LPA is based on the connections between nodes. If there exists an arc, the label of one node
would be the same as its neighboring node. The computational complexity of LPA is lower than that of FUA. However, LPA depends
only on the network structure. It is thus less effective when being applied to directed and weighted networks.

The original FUA proposed by Blondel et al. (2008) aims to determine high modularity partitions of large undirected networks.
FUA is an iterative heuristic which implements two procedures at each iteration: (i) (re-)allocation of nodes to clusters and (ii)
aggregation of nodes to form new nodes. FUA identifies final clusters of nodes at its convergence (i.e., no changes in cluster formation
from one iteration to the next). For (re-)allocation of nodes to cluster, modularity, which is a metric of the strength of the partition of
a network, is used to determine if the (re-)allocation of one node from its original cluster to another is beneficial. In their proposed
algorithm, the change of modularity is computed by moving one node from its original cluster to another one. In other words, such a
7

change would only depend on the reallocation of an individual node to other clusters for simplified computational complexity. Once
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changes of modularity are computed, new clusters are formed based on the maximized modularity and nodes within each cluster
will be aggregated as a new node. Our proposed algorithm shares the key ideas of FUA – (i) (re-)allocation of nodes to clusters
and (ii) aggregation of nodes to form new nodes – which help unfold a complete hierarchical community structure for the network.
Nevertheless, in our application, the bike flows are directed and our problem objective is to minimize the difference between inflow
and outflow of bike trips in a cluster. To this end, we modify the FUA and develop MFUA to generalize the approach for weighted
directed graphs. In particular, FUA has been generalized for directed networks (Chang et al., 2017). In our application for bike
station clustering, we calculate the change of DIOB by (re-)allocating a node from its original cluster to a new one to assess if this
new formation of clusters is beneficial.

We first define the absolute difference between the outflow and inflow of bikes of a given cluster 𝑐 ⊆ 𝑆, denoted by

𝑄𝑐 = |

∑

𝑠∈𝑐,𝑟∉𝑐
𝑤𝑠𝑟 −

∑

𝑠∈𝑐,𝑟∉𝑐
𝑤𝑟𝑠 | (18)

Proposition 2. 𝑄𝑐 can be computed in a more computationally efficient way as follows.

𝑄𝑐 = |

∑

𝑠∈𝑐
(
∑

𝑟∈𝑆
𝑤𝑟𝑠 −

∑

𝑟∈𝑆
𝑤𝑠𝑟) | (19)

Proof. We assume that there are 𝑚 bike stations (𝑠𝑖, 𝑖 = 1, 2, 3,… , 𝑚) in cluster 𝑐. The inflow of bikes from cluster 𝑐 is calculated
by

∑

𝑠𝑖∈𝑐,𝑟∈𝑆⧵𝑐
𝑤𝑟𝑠𝑖 =

∑

𝑟∈𝑆⧵𝑐
𝑤𝑟𝑠1 +

∑

𝑟∈𝑆⧵𝑐
𝑤𝑟𝑠2 +

∑

𝑟∈𝑆⧵𝑐
𝑤𝑟𝑠3 +⋯ +

∑

𝑟∈𝑆⧵𝑐
𝑤𝑟𝑠𝑚 (20)

The outflow of bikes to cluster 𝑐 is calculated by
∑

𝑠𝑖∈𝑐,𝑟∈𝑆⧵𝑐
𝑤𝑠𝑟 =

∑

𝑟∈𝑆⧵𝑐
𝑤𝑠1𝑟 +

∑

𝑟∈𝑆⧵𝑐
𝑤𝑠2𝑟 +

∑

𝑟∈𝑆⧵𝑐
𝑤𝑠3𝑟 +⋯ +

∑

𝑟∈𝑆⧵𝑐
𝑤𝑠𝑚𝑟 (21)

𝑄𝑐 is calculated by

𝑄𝑐 = |

∑

𝑟∈𝑆⧵𝑐
𝑤𝑟𝑠1 −

∑

𝑟∈𝑆⧵𝑐
𝑤𝑠1𝑟 +⋯ +

∑

𝑟∈𝑆⧵𝑐
𝑤𝑟𝑠𝑚 −

∑

𝑟∈𝑆⧵𝑐
𝑤𝑠𝑚𝑟 | (22)

Note that due to the conservation of bike flows within cluster 𝑐, we have:
∑

𝑠𝑖∈𝑐
𝑤𝑠𝑖𝑠1 −

∑

𝑠𝑖∈𝑐
𝑤𝑠1𝑠𝑖 +

∑

𝑠𝑖∈𝑐
𝑤𝑠𝑖𝑠2 −

∑

𝑠𝑖∈𝑐
𝑤𝑠2𝑠𝑖 +⋯ +

∑

𝑠𝑖∈𝑐
𝑤𝑠𝑖𝑠𝑚 −

∑

𝑠𝑖∈𝑐
𝑤𝑠𝑚𝑠𝑖 = 0 (23)

Substituting Eq. (22) into Eq. (23), we have:

𝑄𝑐 = | (
∑

𝑟∈𝑆⧵𝑐
𝑤𝑟𝑠1 −

∑

𝑟∈𝑆⧵𝑐
𝑤𝑠1𝑟 +

∑

𝑠𝑖∈𝑐
𝑤𝑠𝑖𝑠1 −

∑

𝑠𝑖∈𝑐
𝑤𝑠1𝑠𝑖 ) +⋯

+ (
∑

𝑟∈𝑆⧵𝑐
𝑤𝑟𝑠𝑚 −

∑

𝑟∈𝑆⧵𝑐
𝑤𝑠𝑚𝑟 +

∑

𝑠𝑖∈𝑐
𝑤𝑠𝑖𝑠𝑚 −

∑

𝑠𝑖∈𝑐
𝑤𝑠𝑚𝑠𝑖 ) |

= |

∑

𝑠∈𝑐
(
∑

𝑟∈𝑆
𝑤𝑟𝑠 −

∑

𝑟∈𝑆
𝑤𝑠𝑟) | □

(24)

Proposition 2 shows that the difference between the inflow and outflow of bike trips of a cluster is simply the absolute value
of the sum of the net bike flows over all the bike stations in that cluster. Thus, when evaluating 𝑄𝑐 , one may not need to consider
all the cuts resulting from 𝑐 and 𝑆 ⧵ 𝑐, but sum the net bike flows over all the bike stations in 𝑐. This property helps reduce the
computational efforts of MFUA.

We further define 𝛥𝑄𝑠
𝑐,𝑘 (𝑐, 𝑘 ⊆ 𝑆, 𝑠 ∈ 𝑐, 𝑠 ∉ 𝑘) as

𝛥𝑄𝑠
𝑐,𝑘 = 𝑄𝑘∪{𝑠} −𝑄𝑘 +𝑄𝑐⧵{𝑠} −𝑄𝑐 (25)

𝛥𝑄𝑠
𝑐,𝑘 can be interpreted as the change in the value of 𝑄 when moving vertex 𝑠 from cluster 𝑐 to cluster 𝑘.
The main idea of MFUA is as follows. Suppose that we start with a directed weighted graph 𝐺(𝑆,𝐴,𝑊 ). Initially, each cluster is

assigned to a different vertex. Then, the algorithm iterates according to the following procedure. For each vertex 𝑠, the algorithm
considers moving it to the community of each vertex 𝑟 connected to 𝑠, while ensuring Constraints (2) are satisfied. Vertex 𝑠 will be
grouped to the neighboring community, which achieves the best improvement in the objective value. If no improvement is made
when merging vertex 𝑠 with any neighboring community, it remains in the current one. If a community becomes an empty set after
the removal of a vertex, it will be deleted from the set of communities. This process is repeated sequentially for all vertices until no
further improvement can be achieved. To this end, we consider a new graph, whose vertices are now the communities formed and
arcs represent the bike flows between the communities, weighted by the number of bike trips between each pair of communities.
After this new graph is constructed, the same sequence of steps repeats until the constraints are satisfied.

Fig. 3 provides an example of the implementation of MFUA on a small BSN for illustration purposes. At each iteration, each
node is sequentially assigned to a community according to the best improvement in the objective function, and a new community is
8

formed by aggregating the nodes assigned to it. After the second iteration, no improvement in the objective value can be made by
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Fig. 3. An illustration of our proposed modified fast unfolding algorithm (MFUA). Nodes of the same color/shade are in the same community. An arc between
nodes indicates that there is bike flow from one node to another (in the arrow’s direction). In this example, for illustration purposes, only two iterations are
required to obtain the clusters of bike stations.

further allocation of nodes to communities, and therefore, MFUA terminates and the final communities of bike stations are formed.
The detailed flow of MUFA is depicted in Algorithm 1.

5. Case study

5.1. Case description

We conduct a case study with computational experiments based on a dataset collected from the Hangzhou (China) public BSS.
It is the world’s largest public BSS and officially began operations on September 16, 2008. It is a SBBSS, which allows users to rent
and return bikes only at the stations. As of December 2018, there were nearly 1.2 million users, 4,198 bike stations, and nearly
101,700 public bikes registered. The maximum number of trips made in a day reached 473,000 with free usage rate exceeding
96%.
9
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Algorithm 1 Modified Fast Unfolding Algorithm (MFUA)
Require: 𝐺(𝑆,𝐴,𝑊 )

Initialize 𝐶
𝐶 = 𝑆
𝑋 ← | 𝑆 | × | 𝑆| matrix.

1: for each 𝑖 ∈ 𝑆, 𝑐 ∈ 𝐶 do
2: if 𝑖 = 𝑐 then
3: 𝑥𝑐𝑖 = 1
4: else
5: 𝑥𝑐𝑖 = 0
6: end if
7: end for
8: Initialize 𝛾 < 0, 𝑐′ , 𝑐′′ , 𝑐′′′

9: while 𝛾 < 0) do
10: 𝛽 =

∑

𝑐∈𝐶 𝑄𝑐
11: for 𝑖 ∈ 𝑆 do
12: 𝛥𝑄𝑖 = 0
13: for 𝑗 ∈ 𝑆 do
14: if 𝑤𝑖𝑗 +𝑤𝑗𝑖 > 0 then
15: for 𝑐 ∈ 𝐶 do
16: if 𝑥𝑐𝑖 = 1 then
17: 𝑐′ = 𝑐
18: end if
19: if 𝑥𝑐𝑗 = 1 then
20: 𝑐′′ = 𝑐
21: end if
22: end for
23: Compute 𝛥𝑄𝑖

𝑐′ ,𝑐′′

24: if 𝛥𝑄𝑖
𝑐′ ,𝑐′′

< 𝛥𝑄𝑖 and 𝑛𝑚𝑖𝑛 ≤
∑

𝑖∈𝑆 𝑥𝑐
′

𝑖 +
∑

𝑖∈𝑆 𝑥𝑐
′′

𝑖 ≤ 𝑛𝑚𝑎𝑥 then

25: 𝛥𝑄𝑖 = 𝛥𝑄𝑖
𝑐′ ,𝑐′′

and 𝑐′′′ = 𝑐′′

26: else
27: 𝑐′′′ = 𝑐′

28: end if
29: 𝑥𝑐

′

𝑖 = 0 and 𝑥𝑐
′′′

𝑖 = 1
30: end if
31: end for
32: end for
33: for 𝑐 ∈ 𝐶, 𝑖 ∈ 𝑆 do
34: if ∑𝑖∈𝑆 𝑥𝑐𝑖 = 0 then
35: 𝐶 = 𝐶 ⧵ {𝑐}
36: end if
37: end for
38: 𝑊 ← |𝐶| × |𝐶| matrix.
39: for 𝑐 ∈ 𝐶, 𝑘 ∈ 𝐶 do
40: 𝑤𝑐𝑘 =

∑

𝑐,𝑘∈𝐶
∑

𝑖,𝑗∈𝑆 𝑤𝑖𝑗 ⋅ 𝑥𝑐𝑖 ⋅ 𝑥
𝑘
𝑗

41: end for
42: 𝑆 ← 𝐶
43: 𝛼 =

∑

𝑐∈𝐶 𝑄𝑐
44: 𝛾 = 𝛼 − 𝛽
45: end while
nsure: 𝑋

The data about the bike trips in the Hangzhou public BSS were collected from smart IC card records upon bike retrieval and

eturn. Each transaction contains the following information: operation ID (a pick-up or drop-off event), bike ID, user ID or operator

D, station ID, timestamp, and fare.
10
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Fig. 4. Hangzhou City Map (Map Data: Google Maps 2020).

5.2. Experiment design

In this study, we consider that each bike trip is characterized by origin, destination, departure time, and arrival time. We grouped
the transaction records on May 15th (Monday), 2013, by the departure hour for the case study. There were 2,712 bike stations
in total which had bike retrieval/return records. In each hour, bike stations with no transaction record were excluded from our
computational instances. After processing the data, the numbers of bike stations included in our experiments in an hour vary from
1,896 to 2,471. The experiments are conducted using datasets of two morning peak hours (07:00–08:00, 08:00–09:00), two off-peak
hours (10:00–11:00, 14:00–15:00), and two evening peak hours (17:00–18:00, 18:00–19:00).

In the case study, we conduct computational experiments to examine (i) the computational effectiveness and efficiency of our
proposed methodology and (ii) the characteristics of the clusters in different periods.

5.3. Computational effectiveness and efficiency

We first compare the solutions resulting from MFUA with those from CPLEX. Optimality of CPLEX was guaranteed as a branch-
and-cut approach was applied to solve the problem. And then we compare the results obtained by MFUA and the K-means algorithm,
a popular clustering method for transportation and logistics applications. MFUA (coded in Java), CPLEX, and K-means clustering
were run on a Dell OptiPlex 7040 desktop with an Intel Core i7-6700 CPU@ 3.4 GHz and 16.0 GB RAM.

Computational instances were constructed based on smaller networks associated with bike stations in southeast area of Qiantang
River (bounded by the red line in Fig. 4). From the dataset, we observe that there were only a small number of bike trips
traveling from one side of Qiantang River to another. In the selected region, there were less than 200 bike stations. We construct
the computational instances of different sizes by selecting bike stations from this region. Bike trip data from 07:00–08:00 and
17:00–18:00 are used to construct the weights for the morning and evening peak hours, respectively.
11
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Table 3
Computational performances of MFUA and the branch-and-cut algorithm by CPLEX.

Hour |𝐶| |𝑆| 𝑛𝑚𝑖𝑛 𝑛𝑚𝑎𝑥 MFUA CPLEX Diff in % Diff

𝐴𝑣𝑔.𝑄𝑐 𝑀𝑎𝑥.𝑄𝑐 CPU (s) 𝐴𝑣𝑔.𝑄𝑐 𝑀𝑎𝑥.𝑄𝑐 CPU (s) 𝐴𝑣𝑔.𝑄𝑐 CPU 𝑄

07:00–08:00

2 20 10 20 0.00 0.00 0.01 0.00 0.00 3.26 0.00 −32500 0.00
3 30 0.00 0.00 0.01 0.00 0.00 5.50 0.00 −54900 0.00

2 40

20 30

0.50 1.00 0.02 0.50 1.00 8.95 0.00 −14817 0.00
3 50 0.67 1.00 0.02 0.67 1.00 34.97 0.00 −49857 0.00
3 60 0.00 0.00 0.03 0.00 0.00 73.34 0.00 −104671 0.00
4 70 2.00 2.00 0.03 1.33 2.00 110.12 0.67 −122256 33.33
4 80 2.75 3.00 0.04 1.25 2.00 184.34 1.50 −167482 54.55
5 90 4.50 5.00 0.04 1.75 2.00 236.04 2.75 −196600 61.11
5 100 3.40 4.00 0.04 2.00 4.00 298.53 1.40 −248675 41.18
6 110 6.80 6.00 0.05 4.00 5.00 389.34 2.80 −138950 52.94
6 120 4.83 5.00 0.05 4.20 5.00 423.45 0.63 −120886 27.59
7 130 5.17 6.00 0.06 4.50 5.00 498.67 0.67 −127764 12.90
7 140 5.67 6.00 0.08 4.00 4.00 589.34 1.67 −140219 29.41
8 150 7.29 9.00 0.06 6.40 8.00 639.67 0.89 −138959 37.25
8 160 7.14 8.00 0.07 5.86 8.00 789.78 1.29 −151781 18.00
9 170 6.88 7.00 0.09 6.00 6.00 912.42 0.00 154547 12.50
9 180 5.75 7.00 0.09 4.50 5.00 1146.78 1.25 −184865 21.74

17:00–18:00

2 20 10 20 0.00 0.00 0.01 0.00 0.00 2.30 0.00 −22900 0.00
3 30 1.00 2.00 0.01 1.00 2.00 3.50 0.00 −34900 0.00

2 40

20 30

0.50 1.00 0.02 0.50 1.00 11.30 0.00 −56400 0.00
3 50 0.67 1.00 0.03 0.33 1.00 48.63 0.33 −16200 50.00
3 60 0.00 0.00 0.03 0.00 0.00 68.25 0.00 −227400 0.00
4 70 2.00 3.00 0.04 1.00 2.00 105.23 1.00 −262975 50.00
4 80 1.00 2.00 0.04 1.00 2.00 196.47 0.00 −491075 0.00
5 90 2.75 3.00 0.05 1.20 3.00 241.89 1.55 −483680 45.45
5 100 2.80 4.00 0.05 2.75 4.00 305.26 0.05 −610420 21.43
6 110 3.40 5.00 0.07 2.50 4.00 378.52 0.90 −540643 41.18
6 120 2.33 5.00 0.06 0.60 4.00 435.89 1.73 −726383 57.14
7 130 3.00 5.00 0.07 1.80 5.00 492.01 1.20 −702771 50.00
7 140 2.67 4.00 0.08 1.00 5.00 521.49 1.67 −651763 25.00
8 150 2.71 8.00 0.07 2.00 7.00 632.78 0.71 −903871 36.84
8 160 3.13 7.00 0.08 2.57 7.00 801.62 0.55 −1001925 28.00
9 170 3.13 6.00 0.09 2.38 6.00 925.26 0.75 −1027967 24.00
9 180 2.88 5.00 0.09 2.50 4.00 1106.19 0.38 −1229000 13.04

The performance indicators of interest are the average absolute DIOB per cluster, denoted by 𝐴𝑣𝑔.𝑄𝑐 , obtained by the three
approaches we tested (i.e., MFUA, CPLEX, and K-mans clustering), and the CPU seconds needed to obtain the solutions. 𝐴𝑣𝑔.𝑄𝑐 is
defined as

𝐴𝑣𝑔.𝑄𝑐 =
∑

𝑘∈𝐶 𝑄𝑘

|𝐶|

(26)

Similarly, the maximum absolute DIOB among all clusters, denoted by 𝑀𝑎𝑥.𝑄𝑐 , is defined as

𝑀𝑎𝑥.𝑄𝑐 = 𝑚𝑎𝑥𝑘∈𝐶{𝑄𝑘} (27)

The computational results are presented in Tables 3 and 4. % Diff refers to the percentage difference between a metric obtained
by MFUA and CPLEX divided by that found by CPLEX in Table 3 (by MFUA and K-means clustering divided by that found by
K-means clustering in Table 4). A negative % Diff in CPU indicates that MFUA reduces the computational time. A positive % Diff
in 𝑄 represents that the solution quality found by MFUA is worse than that found by CPLEX (in Table 3) or K-means clustering (in
Table 4).

Key observations are as follows.

• In Table 3, the % Diff in 𝑄 ranged from 0.00% to 61.11% between MFUA and CPLEX. It was resulted from the small value
of 𝑄 in most instances and, therefore, even a small difference could lead to a large % Diff. However, the differences between
the average 𝑄𝑐 resulting from MFUA and CPLEX were at most 2.80, indicating that the communities identified by MFUA and
an exact method were of comparable solution quality. Since optimality was guaranteed by CPLEX, the solutions obtained by
MFUA were, therefore, demonstrated to be of good quality.

• In Table 3, DIOB in a cluster produced by MFUA was at most nine bike trips. This observation suggests that our solution
methodology could effectively reduce the imbalance of bike flows between clusters.

• In Table 3, the solution time of CPLEX increased significantly as the problem size increased, from 2.30 s for the smallest instance
(20 stations) to 1146.78 s for the largest one (180 stations). The % Diff between running times was huge, over ten thousand
times in all instances. Although the % Diff between running times of MFUA and Kmeans was positive in most instances, the
12
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Table 4
Computational performances of MFUA and K-means clustering for the instances constructed from the hour 17:00–18:00.
|𝐶| |𝑆| 𝑛𝑚𝑖𝑛 𝑛𝑚𝑎𝑥 Kmeans Diff in % Diff

𝐴𝑣𝑔.𝑄𝑐 𝑀𝑎𝑥.𝑄𝑐 CPU (s) 𝐴𝑣𝑔.𝑄𝑐 CPU 𝑄

2 20 10 20 0.00 0.00 0.03 0.00 −200 0.00
3 30 3.33 5.00 −2.33 −200 −69.70

2 40

20 30

4.00 4.00

0.03

−2.00 −50 −87.50
3 50 4.00 6.00 −3.33 0 −83.25
3 60 10.67 16.00 −10.67 0 −100.00
4 70 14.00 18.00 −12.00 25 −85.71
4 80 14.50 16.00 −13.50 25 −93.10
5 90 12.80 31.00 −10.05 40 −78.52
5 100 18.60 26.00 −15.80 40 −84.95
6 110 25.00 61.00 −21.60 57 −86.40
6 120 30.67 74.00 −28.34 50 −92.40
7 130 21.71 83.00 −18.71 57 −86.18
7 140 32.86 88.00 −30.19 63 −91.87
8 150 26.75 88.00 −24.04 57 −91.12
8 160 30.75 90.00 −27.62 63 −89.84
9 170 28.67 115.00 −25.54 67 −90.31
9 180 28.89 126.00 −26.01 67 −91.15

gap is not greater than 0.06 s. In practice, BR operations are dynamic and may require timely updates on the plan due to
various situations (e.g., changes in demands and repositioning truck breakdowns). In the experiments, MFUA could produce
solutions within a second in all the instances, while the high solution quality was demonstrated.

• We also compare the solutions produced by MFUA and K-means clustering in Table 4. We observe that the % Diff in 𝑄 was
always non-positive for all instances and ranged between −78.52% and −100% when |𝑆| ≥ 40. This suggests that our proposed
MFUA is significantly more effective in balancing the numbers of bikes among clusters than the widely adopted clustering
approach K-means. While the CPU time resulting from MFUA was higher, the difference was negligible as computing times of
both approaches were less than 0.1 s.

The above observations suggest that MFUA is more appropriate for clustering bike stations for BR in real-world applications.

5.4. Comparison of clusters in different periods

In this section, by analyzing the computational time and the characteristics of the clusters identified, we demonstrate the benefits
of our methodology for BR. The results of the comparison between clusters in different hours exhibit users’ travel patterns and verify
that BSS is a typical short-distance transportation mode.

The key performance indicators considered in this experiment are as follows:

• The average percentage of DIOB of clusters (𝐴𝑃𝐷𝐼𝑂𝐵)

𝐴𝑃𝐷𝐼𝑂𝐵 = 1
|𝐶|

∑

𝑐∈𝐶

𝑄𝑐
𝑇𝑂𝑇𝑐

⋅ 100% (28)

where 𝑇𝑂𝑇𝑐 is the total number of bike trips from and to cluster 𝑐.
• The average in-cluster geographical distance between bike stations (𝐴𝐷)

𝐴𝐷 = 1
|𝐶|

∑

𝑐∈𝐶

∑

𝑠,𝑟∈𝑐 𝑑𝑠𝑟
𝑛𝑐 ⋅ (𝑛𝑐 − 1)

(29)

where 𝑑𝑠𝑟 is the distance between bike stations 𝑠 and 𝑟, and 𝑛𝑐 is the number of bike stations in cluster 𝑐.

Similarly, we define the maximum of average in-cluster distances of all the clusters, 𝑀𝑎𝑥.𝐷, as

𝑀𝑎𝑥.𝐷 = 𝑚𝑎𝑥𝑐∈𝐶{
∑

𝑠,𝑟∈𝑐 𝑑𝑠𝑟
𝑛𝑐 ⋅ (𝑛𝑐 − 1)

} (30)

The computational results are summarized in Table 5. Some key observations are illustrated as follows:

• MFUA could produce solutions within a second for large-scale instances. The computational time for the largest instance
(07:00–08:00) was only 0.197 s. The results demonstrate that our methodology can be applied for practical instances.

• The small values of 𝐴𝑃𝐷𝐼𝑂𝐵 (within 6.45% in all instances) suggest that our methodology can provide good-quality solutions
for large-scale problems. Such small values indicate that the clusters formed are relatively independent and can help avoid
over-replenishing bikes and better match bikes to demands.
13
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Table 5
Characteristics of clusters in different periods.

Instance 𝑄 𝐴𝑃𝐷𝐼𝑂𝐵 𝐴𝐷 (km) 𝑀𝑎𝑥.𝐷 (km) |𝐶| |𝑆| CPU (s)

07:00–08:00 2548 6.45% 3.70 3.92 77 2471 0.197
08:00–09:00 1462 4.27% 3.00 3.84 75 2333 0.191
10:00–11:00 290 1.94% 2.61 3.02 72 2026 0.157
14:00–15:00 286 2.35% 2.25 3.57 68 1896 0.109
17:00–18:00 474 2.67% 3.19 3.75 74 2264 0.148
18:00–19:00 746 4.54% 3.23 3.15 73 2171 0.149

• Interestingly, our results exhibit that the bike stations in the same cluster are geographically close to each other (see 𝐴𝐷 in
Table 5). We visualize ten clusters identified by our methodology during a peak hour (07:00–08:00) and an off-peak hour
(14:00–15:00). Bike stations in the same cluster are of same color in Fig. 5. We can attribute this phenomenon to the main
characteristic of bike-sharing systems — short-distance transportation. BR within such a cluster can be more efficient because
long-distance repositioning can be avoided. Our results suggest that, although geographic proximity highly impacts clustering,
our demand-driven framework using trip records shall also be considered for effective clustering for BR in managing BSSs.

• The optimal number of clusters varies according to the hour of the day. In the morning and evening peak hours, users commute
and, therefore, more bikes and bike stations are accessed. In off-peak hours, the origins and destinations are more likely those
places near their working offices, such as convenience stores and restaurants. Similarly, the average distance between bike
stations in the same cluster during off-peak hours is also shorter than that during peak hours. Thus, shared-bike operators
should use different numbers of repositioning trucks during different periods.

• We find that the percentage of large-size clusters (NBS≥30) is greater than 70% in peak hours and 50% in off-peak hours (see
in Fig. 6). As a short-distance transportation mode, each originating bike station is typically associated with a limited number
of destinations. Thus, clusters tend to be dense within a small region. Particularly, in peak hours, users tend to travel between
residential areas and nearby public transport hubs.

We then examine the similarity between the clusters formed in different hours. The results are summarized in Table 6. The
imilarity is calculated as follows. We define 𝑦

𝑡𝑝
𝑠𝑟 as

𝑦
𝑡𝑝
𝑠𝑟 =

∑

𝑐∈𝐶
𝑥
𝑐,𝑡𝑝
𝑠 ⋅ 𝑥

𝑐,𝑡𝑝
𝑟 (31)

where 𝑥
𝑐,𝑡𝑝
𝑠 indicates if station 𝑠 is in cluster 𝑐 in period 𝑡𝑝.

The difference between clustering results in 𝑡𝑝 and 𝑡𝑘 is calculated by

𝐸𝑑𝑡𝑝 ,𝑡𝑘 = ‖𝑌
𝑡𝑝 ,𝑡𝑘
𝑡𝑝

− 𝑌
𝑡𝑝 ,𝑡𝑘
𝑡𝑘

‖

2
(32)

where a component of the matrix 𝑌
𝑡𝑝 ,𝑡𝑘
𝑡𝑝

indicates whether a pair of bike stations are in the same cluster in period 𝑡𝑝, which is indexed
by 𝑦

𝑡𝑝
𝑠𝑟. Note that the used bike stations in different hours may be different. 𝑌 𝑡𝑝 ,𝑡𝑘

𝑡𝑝
includes all the used bike stations in the periods

𝑝 and 𝑡𝑘.
The maximum difference between clustering results in 𝑡𝑝 and 𝑡𝑘 is

𝐸𝑑
𝑡𝑝 ,𝑡𝑘
𝑚𝑎𝑥 =

√

𝑛𝑡𝑝 ,𝑡𝑘 ⋅ (𝑛𝑡𝑝 ,𝑡𝑘 − 1)
2

(33)

here 𝑛𝑡𝑝 ,𝑡𝑘 is the total number of used bike stations in periods 𝑡𝑝 and 𝑡𝑘.
Thus, we define the similarity between clustering results in 𝑡𝑝 and 𝑡𝑘 as

𝛽𝑡𝑝𝑡𝑘 = 1 − 𝐸𝑑𝑡𝑝 ,𝑡𝑘

𝐸𝑑
𝑡𝑝 ,𝑡𝑘
𝑚𝑎𝑥

⋅ 100% (34)

he observations from the comparison are as follows:

• It is observed that the clusters formed in morning peak hours and evening peak hours are similar. It indicates that users’ travel
patterns are similar in the morning and evening. For instance, users ride from residential areas to public transport hubs in the
morning and return the reverse way after work.

• Clusters formed in peak hours are similar. In peak hours, users typically commute between residential areas and work places
(e.g., industrial parks and business districts). On the contrary, clusters of peak hours and off-peak hours are less similar due
to the bike flow dynamics.

• Generally, the similarity between clusters in different hours is greater than 82% as travelers use shared-bikes mainly for
short-distance trips.

Below provides the key takeaways of our computational studies:
14
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Fig. 5. Visualization of ten sample clusters in a peak hour and an off-peak hour.

• MFUA is able to provide quick solutions to large-scale bike station clustering problems. It can provide solutions in less than
0.1 s in all our computational experiments where the number of bike stations is at most 180. On the other hand, state-of-the-art
15
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Fig. 6. Numbers of clusters of various scales in different hours of the day.

Table 6
Similarity between clusters formed in different hours.

Hours 𝛽𝑡𝑝 𝑡𝑘

Morning peak hour & Evening peak hour

07:00 & 17:00 84.84%
08:00 & 17:00 84.19%
07:00 & 18:00 84.68%
08:00 & 18:00 84.08%

Morning peak hour & Morning peak hour 07:00 & 08:00 85.53%
Evening peak hour & Evening peak hour 17:00 & 18:00 85.69%

Off-peak hours 10:00 & 14:00 83.81%

Peak hour & Off-peak hour

07:00 & 10:00 82.89%
08:00 & 10:00 82.30%
17:00 & 14:00 82.63%
18:00 & 14:00 83.32%

MIP solver CPLEX requires hundreds of seconds in most instances. Since dynamic bike station clustering in practice requires
fast solutions (e.g., in seconds), MFUA is more appropriate than CPLEX for implementation. While there is a tradeoff between
computational speed and solution quality, the difference between the average DIOB is at most 2.80 in all instances.

• Our computational experiments suggest that solutions preserve geographic properties when clustering bike stations. The bike
stations within a cluster are typically close to each other. This is due to the fact that shared bikes are usually used for last-mile
transportation.

• Bike clustering solutions for peak hours are similar but appear to be less similar when compared with solutions for the off-peak
hours. This is due to the commuting patterns of the users.

6. Conclusions

This paper proposes a novel demand-driven framework to cluster bike stations for bike repositioning, which is based on the
optimal balancing of bike flows among different communities. An optimization model is developed for clustering with the objective
to minimize the difference between the inflow and outflow of bikes to and from each community. A modified fast unfolding algorithm
is proposed to solve the problem. Computational experiments based on the world’s largest bike sharing system, Hangzhou public
bike service system, were conducted to examine the performance of the proposed algorithm and to provide insights into bike station
clustering. The comparison of clusters in different hours provides an understanding of bike user travel patterns.

Based on our proposed methodology and the real-world data on the bike-sharing system, our research has offered the following
insights.

(i). The computational results show the performance of the proposed approach and the effectiveness of clustering by user demands
as an alternative to forming clusters of bike stations. The proposed approach is shown to produce high-quality solutions in
significantly less computational time for realistic applications.
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(ii). Clusters found by our methodology provide a good operational foundation for bike repositioning in terms of the geographic
proximity of bike stations in the same cluster, the balance of bike flows, and the number of bike stations in each cluster. The
three factors are essential for dynamic bike repositioning.

(iii). Travelers use shared bikes mainly for short-distance trips. While bike flow patterns vary according to the hour of the day,
the clusters formed by the methodology still preserve high similarity on the basis of flow balancing.

There are limitations of our research that shall be remarked. For example, as discussed in Section 3, the demands defined in this
esearch are the bike trips actually realized. Unobserved demands in bike sharing systems have not been considered, which may be
nteresting to incorporate for further analysis. Potential solutions to capture or estimate unobserved demands include the collection
f bike request transactions via mobile apps or by statistical methods such as Tobit Model (Tobin, 1958). Moreover, our research
onsiders station-based bike sharing systems. In a free-floating bike sharing system, there are no stations and it is not straightforward
o construct a network/graph. New solution methods are required for such a system.

There are future research opportunities, which can be extended from this work.

(i). If real-time information about the users’ trips are provided, would the optimal clustering decisions be different? If so, how well
would the solutions be improved due to the real-time information? It would also be exciting to incorporate advanced demand
prediction models (e.g., Huang et al., 2020) for more accurate information and better clustering decisions. Our approach
could be applied in dynamic bike repositioning by incorporating real-time trip records. Based on real-time and predicted trips,
the whole bike station network would be divided into different sub-networks hour by hour for better clustering decisions.

(ii). Our proposed methodology is not restricted to bike repositioning problems only, but can be applied to other shared mobility
systems, such as carsharing (Martin and Minner, 2021) or even multi-model transit networks (Li et al., 2020; Wu et al.,
2020; Luo et al., 2021). It would be interesting to investigate the clustering decisions and optimal solution structures of these
shared mobility systems, as the user demand and travel behaviors are expected to be quite different from those in bike sharing
systems.

(iii). Bike repositioning at an operational level is typically considered and solved as vehicle routing problems. The bike station
clustering and vehicle routing decisions may be jointly determined for more effective solutions. However, the computational
complexity of solving such an integrated problem is expected to be high. Simplified yet effective mathematical models
and efficient computational algorithms are required for practical implementation. It would be necessary to develop further
solution approaches, including exact approaches and combinations of algorithms proposed in the domain of network theory
and metaheuristics. It would be useful to solve network-based problems with the guarantee of solution quality.
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