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Quantile regression estimate gives more complete information about the response

distribution but is more costly to compute than mean regression. When the dimen-

sion is large, a ridge penalty is conventionally used to stabilize the estimate and

achieve better bias-variance trade-off. We investigate a random projection approach

to ease the computational burden and establish its statistical properties. Monte Carlo

studies are carried out to illustrate the computational and statistical properties of the

estimates.
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1 | INTRODUCTION

Quantile regression was proposed by Koenker and Bassett Jr (1978) and gives more complete information about the conditional response

distribution than traditional mean regression. The popular implementation for standard linear quantile regression is based on converting the

problem to a linear programming. In modern statistics, one is often concerned with problems containing a large number of predictors, in which

case standard regression methodologies may become unstable or even infeasible. This stability issue can be rigorously quantified by a

decomposition of the mean squared error into a bias term and a variance term, and in high-dimensional problems, the variance is dramatically

inflated. Motivated by this, Hoerl and Kennard (1970) used ridge regression for mean regression with a quadratic penalty in which a parameter in

the penalty can be tuned to achieve the optimal bias-variance trade-off. Using penalties to stabilize estimates has since become prevalent in the

statistics and machine learning literature. Following the pioneering work of Fan and Li (2001) and Tibshirani (1996), an appropriately constructed

penalty can also simultaneously serve the purpose of variable selection. In this paper, we only focus on the ridge penalty, whereas it is an interest-

ing problem to investigate similar strategies for penalties that can perform variable selection.

For quantile regression, Yi and Huang (2017) recently proposed an efficient semi-smooth coordinate descent algorithm to compute the

elastic-net estimator, with the ridge estimator being a special case. The complexity of the semi-smooth algorithm is O(np) per iteration, which

is still slow when both n and p are large. In this work, we consider the approximation of the linear quantile ridge regression estimator via

random projection. Random projection is a classical technique for reducing storage and computational costs in various settings (Liu et al.

2019; Wang et al. 2013). Applications of random projection to vision problems have been popularly studied (Anand et al. 2012; Bingham &

Mannila, 2001; Mu et al. 2011). Maillard (2012) considered random projection for standard nonpenalized linear regression and derived its

excess risk bound, whereas Zhang et al. (2014) used a dual random projection approach for classification problems. The methodology we

propose here is relatively straightforward, constructed by generating s random linear combinations of the original p predictors with s < p and

using these s linear combinations as the new predictors. Thus, the dimension of the quantile regression problem reduces from p to s.

We establish some upper bound for the approximate estimator which suggests that the method works well when the covariate matrix is

approximately low rank.

Related to this work, Zhang et al. (2021) considered random projection for nonparametric quantile regression when the sample size is large,

whereas we consider the high-dimensional case in a parametric setting. Note that the technical aspects for nonparametric regression and

high-dimensional regression are quite different. In particular, the current setting requires careful analysis of the spectrum of the covariance matrix

of the predictors. Our work can thus be considered to be complementary to the work in the nonparametric setting.
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2 | RANDOM PROJECTION METHOD

We consider the following optimization problem for quantile regression with a ridge penalty:

β̂¼ arg min
β

Xn
i¼1

ρτðyi�x >
i βÞþnλkβk2,

where ρτ(x) = x(τ � I{x ≤ 0}) is the check loss function used for quantile regression, ðyi,xiÞ, i¼1,…,n are independent copies of (y, x) with

p-dimensional predictor x and the response variable y, τ� (0, 1) is the level of quantile under investigation and λ>0 is a tuning parameter

controlling the trade-off between bias and variance. In quantile regression, we assume that ϵ :¼ y�x > β0 satisfies Pðϵ≤0jxÞ¼ τ with β0 denoting

the true parameter. Here, we are concerned with a problem with a large p that imposes computational efficiency constraints on finding the

solution of the optimization problem. A complementary problem is concerned with very large n which will not be dealt with in this paper but bears

some similarities with the problem studied below.

Given a p � s matrix S with s ≤ p, whose generation will be discussed later, we can find an approximate solution via

~α¼ arg min
α

Xn
i¼1

ρτðyi�x >
i SαÞþnλkSαk2

and set ~β¼ S~α. When s= p and S is invertible, we obviously have β̂¼ ~β, but the main interest is in the case where s is much smaller than p so that

the optimization problem for α is a quantile ridge regression problem with dimension s which can be solved faster. Our goal is to establish the

statistical properties of ~β as an estimator of β0.

It is clear that if the n � p covariate matrix X¼ðx1,…,xnÞ > has rank r, then one can find S and α such that x >
i Sα¼ x >

i β0 for all i� {1,… , n}, as

long as s≥ r. Thus, the projection approach is expected to work well if Σ :¼ E½xx > � is approximately low rank. Our established bound does not

require any low-rank assumption, but the bound tends to be small when Σ is approximately low rank.

Let η, κ � (0, 1) be fixed numbers, and let B be any fixed matrix of a certain size such that the matrix products below are well defined. Let the

singular value decomposition (SVD) of Σ be UDU> with diagonal entries of D arranged decreasingly and U1 the first r columns of U with r≤ s. Our

risk bound below depends on the choice of r. Ideally, we should choose r such that the risk bound is the smallest, but this optimal choice would

depend on unknown quantities in a complicated way, and our bound is not claimed to be tight. Thus, we will not discuss the optimal choice of r to

use in the proof. Note r is merely used as a parameter in our proof and is not a parameter to choose when computing the estimator. Let S be a

random matrix of size n� s. We assume S satisfies the following two properties with a probability that depends on s:

(i) kU >
1 SS > U1� Ikop ≤ η.

(ii) kU >
1 SS > B�U>

1 Bk2F ≤ κkBk2F .

In the above, k.kop and k.kF denote the operator norm and the Frobenius norm for matrices, respectively. In Wang et al. (2018), the first

property is called Subspace Embedding Property (SEP), and the second is called Matrix Multiplication Property (MMP). It has been verified that,

for various types of random matrices, SEP and MMP are satisfied. For example, tab. 5 in that paper shows that for a Gaussian random matrix

(among many other possibilities shown there), if s≥Cðrþ logð1=δ1ÞÞ=η2, SEP holds with probability at least 1� δ1, and if s≥ r/(κδ2), MMP holds

with probability at least 1� δ2.

We will establish an upper bound for the risk Exkx > ð~β�β0Þk2 ¼kΣ1=2ð~β�β0Þk2, where the subscript x in the expectation indicates that we

are taking expectation over x which is independent of the data. To connect the check loss with the risk, we make the following assumptions.

Assumption (A). There exists a constant C > 0 such that E½ρτðy�x > βÞ��E½ρτðy�x > β0Þ�≥CEðx > ðβ�β0ÞÞ2 for all β�ℝp.

Assumption (B). The conditional density of ϵ :¼ y�x > β0 given x (equivalently, the conditional density of y) is bounded by a constant uniformly

over the support of x.

Assumption (A) is basically the same as assumption (A) in Li et al. (2007), with the latter being slightly more general. It is also a special case of

assumption 3 in Lv et al. (2018) with q¼2 in their assumption, and some sufficient condition for this assumption was also given there. Using the

first four lines in (4) in the proof below, we can easily see that a sufficient condition for (A) is that the conditional density of y is bounded from

below. Assumption (A) allows one to connect the loss to the estimation error and is thus required and prevalent in the literature of quantile

regression (Belloni & Chernozhukov, 2011; Zou & Yuan, 2008).
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Assumption (B) is mild and often used in quantile regression (He & Shi, 1994; Belloni & Chernozhukov, 2011). The following theorem is stated

in a way that sacrifices clarity for generality. After the proof, a few remarks are presented to make the bound more explicit. In the statement as

well as the proof of the theoretical results, C denotes a generic positive constant that can take different values at different places.

Theorem 1. Assume assumptions (A) and (B) hold and S satisfies SEP and MMP stated previously. We also assume kxk≤C for some

constant C. For any u>C=
ffiffiffi
n

p
with a fixed constant C, with λ set appropriately as in the proof, with probability at least 1�

expf�CnðAnðuÞ=uÞ2g, we have

kΣ1=2ð~β�β0Þk2 ≤CAnðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κðp� rÞ

p
kβ0kþCðAnðuÞ=uÞ2þCðσrþ1þκsrþ1Þkβ0k2,

where AnðuÞ¼
Pp

j¼1σju
2=ðnðσjþu2ÞÞ

� �1=2
, σ1≥ σ2≥…≥ σp≥ 0 are the eigenvalues of Σ, and srþ1 ¼

Pp
j¼rþ1σj .

In preparation for the proof of the theorem, we first state and prove several useful lemmas.

Lemma 1. For any u > 0,

E sup
β:kΣ1=2βk≤ u,kβk≤1

1
n

Xn
i¼1

wix
>
i β

" #
≤CAnðuÞ,

where wi, i¼1,…,n are i.i.d. Rademacher variables.

Proof of Lemma 1. Assume the SVD Σ¼UDU> with D the diagonal matrix with entries σ1≥ σ2≥…≥ σp≥0. Using that β > Σβ¼
β > UDU > β≤ u2 and β > UU > β¼ β > β≤1, we have β > UðD=u2þ IÞU> β≤2. Thus, we can bound

E sup
β:kΣ1=2βk≤ u,kβk≤1

1
n

Xn
i¼1

wix
>
i β

" #

¼ E sup
β:kΣ1=2βk≤ u,kβk≤1

1
n
w > Xβ

" #

≤ E sup
β:β > UðD=u2þIÞU > β≤2

1
n
w > Xβ

" #
,

where w¼ðw1,…,wnÞ > . Furthermore,

E sup
β:β > UðD=u2þIÞU > β≤2

1
nw

> Xβ

" # !2

≤ E sup
β:β > UðD=u2þIÞU > β≤2

1
nw

> Xβ

 !2
2
4

3
5

¼ E sup
β:β > UðD=u2þIÞU > β≤2

1
nw

> XUðD=u2þ IÞ�1=2ðD=u2þ IÞ1=2U > β

 !2
2
4

3
5

≤ E sup
β:β > UðD=u2þIÞU > β≤2

1
n2

kw > XUðD=u2þ IÞ�1=2k2kðD=u2þ IÞ1=2U > βk2
" #

≤
C
n2

E w > XUðD=u2þ IÞ�1
U > X > w

h i
≤

C
n2

E tr XUðD=u2þ IÞ�1
U > X >

� �h i
≤
C
n
E tr ðD=u2þ IÞ�1

D
� �h i

¼C
n

Xp
j¼1

σju2

σjþu2
:

□
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Lemma 2. If u>C=
ffiffiffi
n

p
, with probability at least 1�e�CnðAnðuÞ=uÞ2 ,

ð1=nÞP
i
ðρτðyi�x >

i βÞ�ρτðyi�x >
i β0ÞÞ

�����
�E½ρτðy�x > βÞ�ρτðy�x > β0Þ�j

≤CðAnðuÞ=uÞkΣ1=2ðβ�β0ÞkþCAnðuÞkβ�β0k,8β�ℝp:

Proof of Lemma 2. By the standard symmetrization argument Pollard (1984), we have

E sup
β

ðP�PnÞ ρτðy�x > βÞ�ρτðy�x > β0Þ
u�1kΣ1=2ðβ�β0Þkþkβ�β0k

�����
�����

" #

≤CE sup
β

ð1=nÞP iwix > ðβ�β0Þ
u�1kΣ1=2ðβ�β0Þkþkβ�β0k

�����
�����

" #
,

ð1Þ

where wi , i¼1,…,n are i.i.d. Rademacher variables and the inequality follows from the contraction inequality for the Rademacher complexity

(see, e.g., theorem 2.2 of Koltchinskii, 2011) since ρτ is Lipschitz continuous.

For the right-hand side of (1), we consider the set fγ : γ¼ðβ�β0Þ=ðu�1kΣ1=2ðβ�β0Þkþkβ�β0kÞ,β�ℝpg. It is easy to see this

class is actually contained in fγ : kΣ1=2γk≤ u,kγk≤1g. Thus, by Lemma 1, we get

E sup
β

ð1=nÞP iwix >
i ðβ�β0Þ

u�1kΣ1=2ðβ�β0Þkþkβ�β0k

�����
�����

" #
≤CAnðuÞ:

Next, we use a concentration inequality to remove the expectation above. Since

ρτðy�x > βÞ�ρτðy�x > β0Þ
u�1kΣ1=2ðβ�β0Þkþkβ�β0k

�����
�����

≤C
x > ðβ�β0Þ

u�1kΣ1=2ðβ�β0Þkþkβ�β0k

�����
�����

≤Ckxk≤C,

and

Var
ρτðy�x > βÞ�ρτðy�x > β0Þ
u�1kΣ1=2ðβ�β0Þkþkβ�β0k

 !

≤CVar
x > ðβ�β0Þ

u�1kΣ1=2ðβ�β0Þkþkβ�β0k

 !

≤Cu2,

using the concentration inequality (see, e.g., the Adamczak bound on pages 24–25 of Koltchinskii, (2011)), we have

sup
β

ðP�PnÞ ρτðy�x > βÞ�ρτðy�x > β0Þ
u�1kΣ1=2ðβ�β0Þkþkβ�β0k

�����
�����

≤CE sup
β

ðP�PnÞ ρτðy�x > βÞ�ρτðy�x > β0Þ
u�1kΣ1=2ðβ�β0Þkþkβ�β0k

�����
�����

" #

þCu
ffiffiffiffiffiffiffi
t=n

p þC
ffiffi
t

p
=n,

with probability at least 1 � e�t. By setting t¼CnðAnðuÞ=uÞ2, we complete the proof of the lemma since u
ffiffiffiffiffiffiffi
t=n

p
≤CAnðuÞ and

ffiffi
t

p
=n≤CAnðuÞ using

that u≥C=
ffiffiffi
n

p
. □

Write U¼ðU1,U2Þ where U1 is p� r and U2 is p� (p� r), and D¼ D1

D2

� �
, where D1 contains the first r eigenvalues and D2 contains the

rest. Define

α̌¼ S > U1ðU >
1 SS > U1Þ�1

U>
1 β0:
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We have the following lemma.

Lemma 3. Exkx > β0�x > Sα̌k2 ¼Opððσrþ1þκsrþ1Þkβ0k2Þ and kSα̌k2 ¼Opðð1þκðp� rÞÞkβ0k2Þ.

Proof of Lemma 3. We have

kΣ1=2β0�Σ1=2Sα̌k2
¼kUD1=2U > β0�UD1=2U> Sα̌k2
¼kD1=2U > β0�D1=2U > Sα̌k2
¼kD1=2

1 U >
1 β0�D1=2

1 U >
1 Sα̌k2þkD1=2

2 U >
2 β0�D1=2

2 U>
2 Sα̌k2:

ð2Þ

For the first term in (2), we have

kD1=2
1 U >

1 β0�D1=2
1 U >

1 Sα̌k¼kD1=2
1 U >

1 β0�D1=2
1 U >

1 SS > U1ðU >
1 SS > U1Þ�1

U>
1 β0k¼0:

For the second term in (2), we have

kD1=2
2 U>

2 β0�D1=2
2 U >

2 Sα̌k
≤ kD1=2

2 U>
2 β0kþkD1=2

2 U >
2 Sα̌k

≤C
ffiffiffiffiffiffiffiffiffi
σrþ1

p kβ0kþkD1=2
2 U>

2 SS > U1ðU >
1 SS > U1Þ�1

U >
1 β0k

≤C
ffiffiffiffiffiffiffiffiffi
σrþ1

p kβ0kþkD1=2
2 U>

2 SS > U1kF � kðU >
1 SS > U1Þ�1kop � kU >

1 β0k
≤C

ffiffiffiffiffiffiffiffiffi
σrþ1

p kβ0kþC
ffiffiffiffiffiffiffiffiffiffiffi
κsrþ1

p kβ0k,

where the last step used the properties SEP and MMP for S and that kD1=2
2 U >

2 k2F ¼ trðD1=2
2 U >

2 U2D
1=2
2 Þ¼ trðD2Þ¼ srþ1. For the second bound in

the lemma, we have

kSα̌k2

≤ kU >
1 SS > U1ðU >

1 SS > U1Þ�1
U>

1 β0k2þkU >
2 SS > U1ðU >

1 SS > U1Þ�1
U >

1 β0k2
≤ kβ0k2þCκðp� rÞkβ0k2:

ð3Þ

□

Proof of Theorem 1. By the definition of ~α, we have

1
n

X
i

ρτðyi�x >
i S~αÞþλkS~αk2 ≤ 1

n

X
i

ρτðyi�x >
i Sα̌Þþ λkSα̌k2:

Using Lemma 2, with probability at least 1�expf�CnðAnðuÞ=uÞ2g,

E½ρτðy�x > S~αÞ��E½ρτðy�x > Sα̌Þ�
≤ λkSα̌k2� λkS~αk2þCu�1AnðuÞkΣ1=2Sð~α� α̌ÞkþCAnðuÞkSð~α� α̌Þk
¼�2λ⟨Sα̌,Sð~α� α̌Þ⟩�λkSð~α� α̌Þk2

þCu�1AnðuÞkΣ1=2Sð~α� α̌ÞkþCAnðuÞkSð~α� α̌Þk
≤2λkSα̌k �kSð~α� α̌Þk�λkSð~α� α̌Þk2
þCu�1AnðuÞkΣ1=2Sð~α� α̌ÞkþCAnðuÞkSð~α� α̌Þk

≤2λkSα̌k2þ λ

2
kSð~α� α̌Þk2�λkSð~α� α̌Þk2

þCu�1AnðuÞkΣ1=2Sð~α� α̌ÞkþCAnðuÞkSð~α� α̌Þk
≤2λkSα̌k2� λ

2
kSð~α� α̌Þk2þCu�1AnðuÞkΣ1=2Sð~α� α̌Þk

þC
CA2

nðuÞ
2λ

þ λ

2C
kSð~α� α̌Þk2

 !

¼2λkSα̌k2þCAnðuÞ2
λ

þCu�1AnðuÞkΣ1=2Sð~α� α̌Þk:
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With the choice λ�AnðuÞ=kSα̌k, we now have

E½ρτðy�x > S~αÞ��E½ρτðy�x > Sα̌Þ�≤CAnðuÞkSα̌kþCðAnðuÞ=uÞkΣ1=2Sð~α� α̌Þk:

Now, we bound jE½ρτðy�x > Sα̌Þ��E½ρτðy�x > β0Þ�j. Using Knight's identity that ρτðx�yÞ�ρτðxÞ¼�yðτ� Ifx≤ 0gÞþ Ð y0ðIfx≤ tg� Ifx≤0gÞdt, we

have

E½ρτðy�x > Sα̌Þ��E½ρτðy�x > β0Þ�j j

¼ �E½ðx > ðSα�β0ÞÞÞðτ� Ify ≤ x > β0gÞ�þE
ðx > ðSα̌�β0Þ

0
ðFðtjxÞ�Fð0jxÞÞdt

�����
�����

¼ E
ðx > ðSα̌�β0Þ

0
ðFðtjxÞ�Fð0jxÞÞdt

�����
�����

¼ E
ðx > ðSα̌�β0Þ

0
fðt ∗ jxÞtdt

�����
�����

≤CkΣ1=2ðSα̌�β0Þk2,

ð4Þ

where F(. jx) is the conditional distribution of ϵ given x, f(. jx) is the corresponding conditional density, t∗ is a value between 0 and t that appears in

the Taylor's expansion and the inequality uses Assumption (B). Using (4) and Assumption (A), we get that

kΣ1=2ðS~α�β0Þk2
≤CAnðuÞkSα̌kþCðAnðuÞ=uÞkΣ1=2Sð~α� α̌ÞkþCkΣ1=2ðSα̌�β0Þk2
≤CAnðuÞkSα̌kþð1=2ÞkΣ1=2ðS~α�β0Þk2þCkΣ1=2ðSα̌�β0Þk2þCðAnðuÞ=uÞ2,

which implies

kΣ1=2ðS~α�β0Þk2
≤CAnðuÞkSα̌kþCðAnðuÞ=uÞ2þCkΣ1=2ðSα̌�β0Þk2
≤CAnðuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þκðp� rÞp kβ0kþCðAnðuÞ=uÞ2þCðσrþ1þκsrþ1Þkβ0k2:

□

Remark 1. If σr ≥ C/n, by choosing u2 ¼ σr , we have A2
nðuÞ� ðrσr þ srþ1Þ=n, and thus,

kΣ1=2ðSα̌�β0Þk2

≤C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rσr þ srþ1

n
ð1þκðp� rÞÞ

r
kβ0kþC

rþ srþ1=σr
n

þCðσrþ1þκsrþ1Þkβ0k2:

If Σ has rank r, the bound can be further simplified due to σrþ1 ¼ srþ1 ¼0.

Remark 2. If in addition to SEP and MMP, we impose the “bounded spectral norm property” that kSk2op ≤Cp=s (Wang et al. 2018);

we have the following bound in place of (3):

kSα̌k2

≤ kSk2opkS> U1ðU >
1 SS > U1Þ�1

U >
1 β0k2

≤CkSk2opkU >
1 β0k2

≤Cðp=sÞkβ0k2:

The factor (1 + κ(p � r)) in the bound of Theorem 1 can thus be replaced by C(p/s) giving a slightly different risk bound.

Remark 3. In the proof, λ¼AuðuÞ=kSα̌k is set to balance 2λkSα̌k2þCAnðuÞ2=λ. This choice of λ merely serves theoretical purposes

and is not feasible in practice since α̌ is unknown. This is a reason we choose not to mention the choice of λ in the statement of the

theorem. Furthermore, it is clear from the proof that we can derive a bound for any value of λ given by
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kΣ1=2ðS~α�β0Þk2
≤Cλð1þ κðp� rÞÞkβ0k2þCAnðuÞ2=λþCðAnðuÞ=uÞ2þCðσrþ1þ κsrþ1Þkβ0k2:

3 | NUMERICAL STUDIES

We perform some simulations to examine the performances of random projection in quantile ridge regression. The covariates are generated from

xi �Nð0,ΣÞ with (i, j)-entry of Σ given by ρji� jj with ρ� {0.1, 0.4, 0.7}. The components of β0 are generated from N(0, 0.22). The responses are

generated independently from

yi ¼ x >
i β0þ0:3ð1þΦðxi1ÞÞðϵi�Φ�1ðτÞÞ,

where ϵi �i:i:d:Nð0,1Þ and Φ is the standard normal cdf and Φ�1 is the corresponding quantile function so that the τth conditional quantile function

is just x >
i β0. We use τ¼0:7 for illustration. We set n¼ p¼2048. In each case, 200 data sets are generated. We use a range of tuning parameters

logðλÞ� f�10,�9,…,3,4g. For the projection matrix S, we consider both Gaussian projection (entries of the matrix are i.i.d. Gaussian) and

F IGURE 1 Errors in estimating β0 as s vary in {n/2, n/22,… , n/27}. The black curve shows the results without using random projection, and
other coloured curves show the errors for different values of s (with larger s corresponding to smaller errors). The three rows correspond to
ρ¼0:1,0:4,0:7, respectively
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subsampling (here, S is constructed by randomly drawing s columns of the identity matrix). We compute the estimator with random projection for

s� {n/2, n/22,… , n/27}. The performances are assessed by kΣ1=2ðβ�β0Þk.
The model is fitted using the publicly available R package hqreg based on the semi-smooth coordinate descent method of Yi and

Huang (2017), which used warm starts to compute the solution path efficiently. The results are presented in Figure 1. In this figure, the three rows

correspond to ρ¼0:1,0:4,0:7 from top to bottom, whereas the two columns are for Gaussian projection and sub-sampling, respectively. Each

curve in the figure shows how the error changes with λ, whereas different curves are for different s (the black curve at the bottom of each figure

shows the error of the standard estimator without random projection). Naturally, the curve with larger error corresponds to smaller value of s. We

see that as ρ increases, the performances typically become better.

4 | CONCLUSION

In this short manuscript, we considered quantile linear regression with a ridge penalty, which is suitable for high-dimensional models. We

established some statistical property of the estimator when random projection is used.

As mentioned in the text, a closely related problem is to deal with the case when n is large, and a sketching method can be used in the case.

Theoretical study of random sketching seems to bear some similarities with random projection and is worthy of investigation in the future.

As shown in the proof, the theoretical choice of λ depends on unknown quantities. In practice, one can of course use cross-validation to

choose λ. The purpose of the current work is to show (by simulation) that random projection can be used to approximate the original problem for

any choice of λ. Study of data-driven optimal choice of λ with theoretical guarantees seems hard, if not impossible.
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