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Abstract
Wepropose a general formulation of nonconvex and nonsmooth sparse optimization problems
with convex set constraint, which can take into account most existing types of nonconvex
sparsity-inducing terms, bringing strong applicability to a wide range of applications. We
design a general algorithmic framework of iteratively reweighted algorithms for solving the
proposed nonconvex and nonsmooth sparse optimization problems, which solves a sequence
of weighted convex regularization problems with adaptively updated weights. First-order
optimality condition is derived and global convergence results are provided under loose
assumptions, making our theoretical results a practical tool for analyzing a family of various
reweighted algorithms. The effectiveness and efficiency of our proposed formulation and
the algorithms are demonstrated in numerical experiments on various sparse optimization
problems.

Keywords Nonconvex and nonsmooth sparse optimization · Iteratively reweighted methods

1 Introduction

Nonconvex and nonsmooth sparse optimization problems have been becoming a preva-
lent research topic in many disci plines of applied mathematics and engineering. Indeed,
there has been a tremendous increase in a number of application areas in which noncon-
vex sparsity-inducing techniques have been employed, such as machine learning [5,42],
telecommunications [36,38], image reconstruction [23], sparse recovery [11,30] and signal
processing [8,31]. This is mainly because of their superior ability to reduce the complexity
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of a system, improve the generalization of the prediction performance, and/or enhance the
robustness of the solution, compared with traditional convex sparsity-inducing techniques.

Despite their wide application, nonconvex and nonsmooth sparse optimization problems
are computationally challenging to solve due to the nonconvex and nonsmooth nature of the
sparsity-inducing terms. A popular method for handling the convex/nonconvex regulariza-
tion problems is the iteratively reweighted algorithm, which approximates the nonconvex and
nonsmooth problem by a sequence of trackable convex subproblems. There have been some
iteratively reweighted algorithms proposed for special cases of the nonconvex and nonsmooth
problems. For example, in [9,24,44] Yin et al. have designed an iteratively reweighted algo-
rithm for solving the unconstrained nonconvex �p norm model and in [28] Lu has analyzed
the global convergence of a class of reweighted algorithms for the unconstrained nonconvex
�p regularized problem. The constrained �p-regularization problem is studied to improve the
image restoration using a priori information and the optimality condition of this problem is
given in [41]. The critical technique of this type of algorithms is to add relaxation parameters
to transform the nonconvex and nonsmooth sparsity-inducing terms into smooth approxi-
mate functions and then use linearization to obtain convex subproblems [10,22]. It should
be noticed that the relaxation parameter should be driven to 0 in order to obtain the solution
of the original unrelaxed problem. Two most popular variants of iteratively reweighted type
of algorithms are the iteratively reweighted �1 minimization and the iteratively reweighted
squared �2-norm minimization. The former has convex but nonsmooth subproblem, while
the latter leads to convex and smooth subproblems. It has been reported by E. Candes et al.
in [8] that the reweighted �1 minimization can significantly enhance sparsity of the solution.
It has been demonstrated that Iteratively reweighted least-squares have greatly promoted the
computation and correctness of robust regression estimation [17,39].

However, iteratively reweighted algorithms are generally difficult to track and analyze.
This is mainly because most nonconvex functions are non-Lipschitz continuous, especially
around sparse solutions that we are particularly interested in. The major issue caused by
this situation is that the optimal solution cannot be characterized by common optimality
conditions. For some special cases where the sparsity-inducing term is �p-norm and no con-
straint is involved, the first-order and second-order sufficient optimality conditions have been
studied in [32,41]. Chen et al have derived a first-order necessary optimality condition for
local minimizers and define the generalized stationary point of the constrained optimiza-
tion problems with nonconvex regularization [4]. These results are used by Lu to derive the
global convergence of a class of iteratively reweighted �1 and �2 methods for unconstrained
�p regularization problems [28]. For the sum of a convex function and a (nonconvex) non-
decreasing function applied to another convex function, the convergence to a critical point
of the iteratively reweighted �1 algorithm is provided when the objective function must be
coercive [32]. As far as we know, the convergence results of iteratively reweighted �1 and
�2 methods for Non-Lipschitz nonconvex and nonsmooth problems with general convex-set
constraint have not been provided.

As for more general cases, the analysis in current work has many limitations due to
this obstacle for theoretical analysis. First, instead of driving the relaxation parameter to 0,
many existing methods [6,9] aim to show the convergence to the optimal solution of the
relaxed sparse optimization problems. An iteratively reweighted least squares algorithm for
the relaxed problem �p problem in sparse signal recovery has been discussed in [1] with
local convergence rate analysis. A critical aspect of any implementation of such an approach
is the selection of the relaxation parameters which prevents the weights from becoming
overwhelmingly large. As been explained in [9], large relaxation parameters will smooth out
many local minimizers, whereas small values can cause the subproblems difficult to solve
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and the algorithm too quickly get trapped into local minimizers. For this purpose, updating
strategies of the relaxation parameter have been studied in [6], but it is only designed for
constrained convex problems.

Second, somemethods assumeLipschitz continuity of the objective in their analysis,which
only holds true for few nonconvex sparsity-inducing terms such as log-sum regularization
[28,32]. Though this assumption is not explicitly required by some other researchers, they
need another assumption that the negative of the sparsity-inducing term—which is convex—
is subdifferentiable everywhere [32]. However, it must be noticed that this is a quite strong
assumption and generally not suitable for most sparsity-inducing terms e.g. �p-norm, con-
sequently limiting their applicability to various cases.

This situationmay become evenworse when a general convex set constraint is added to the
problem. To the best of our knowledge, only simple cases such as linearly constrained cases
have been studies by current work. To circumvent the obstacle for analysis, current methods
either focus on the relaxed problem as explained above, or unconstrained reformulations
where the constraint violation is penalized in the objective [9,28,41]. The latter approach
then arises the issue of how to select the proper regularization parameter value.

Moreover, some work [27] assumes the coercivity of the objective to guarantee that the
iterates generated by the algorithms must have clustering points. This sets another limitation
as many sparsity-inducing terms is bounded above, e.g., arctan function. This assumption
therefore requires the rest part of the objective must be coercive, which is generally not the
case.

Overall, for cases involving more general sparsity-inducing terms and convex-set con-
straints, the analysis of the behavior of iteratively reweighted algorithms remains an open
question.

Despite of the iteratively reweighted algorithms, the Difference of Convex (DC) algorithm
is also used for tackling some specific-form sparse optimization problems. As Pang et al.
mentioned in [47,48], a great deal of existing nonconvex regularizations can be represented
as DC functions, and then can be solved by the DC algorithm. Unfortunately, these works
need the assumption that the nonconvex regularization term is Lipschitz differentiable, which
limits the applicability to the cases like �p-norm regularization. To address this issue, Liu et al.
have proposed a Successive Difference of ConvexApproximationMethod (SDCAM) in [45],
which makes use of the Moreau envelope as a smoothing technique for the nonsmooth terms.
However, they need the proximal mapping of each nonsmooth function is easy to compute.
This requirement obstacles the use of lots of nonconvex regularizations, ofwhich the proximal
operator can not be solved effectively. For example, when we use the �p norm (0 < p < 1)
as the regularization term, only the cases p = 1/2 and p = 2/3 have an analytical solution
of the associated proximal mapping as shown in [46]. This fact limits the SDCAM to select
other values of p. And as shown in experimental results, the �p regularization with different
values of p perform differently. Usually, smaller p induces more sparse solution.

In this paper, we consider a unified formulation of the convex set constrained nonconvex
and nonsmooth sparse optimization problems. A general algorithmic framework of Adap-
tively Iterative Reweighted (AIR) algorithm is presented for solving these problems. We
derive the first-order condition to characterize the optimal solutions and analyze global
convergence of the proposed method to the first-order optimal solutions. The most related
research work mainly includes the iteratively reweighted algorithms proposed by [6] for
solving general constrained convex problems, the reweighted methods by [28,29] for solving
unconstrained �p regularization problems, and the algorithmic framework proposed in [32]
for solving the unconstrained nonsmooth and nonconvex optimization problems. However,
we emphasize again that our focus is on dealing with cases with general nonconvex and
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nonsmooth sparsity-inducing terms and general convex set constraints—a stark contrast to
the situations considered by most existing methods.

The contributions of this paper can be summarized as follows.

• Our unified problem formulation can take into account most existing types of nonconvex
sparsity-inducing functions which also allows for group structure as well as general con-
vex set constraint. A general algorithmic framework of adaptively iteratively reweighted
algorithms is developed by solving a sequence of trackable convex subproblems. A uni-
fied first-order necessary conditions is derived to characterize the optimal solutions by
using Fréchet subdifferentials, and global convergence of the proposed algorithm is pro-
vided.

• For reweighted �1 and �2 minimizations, our algorithm allows for vanishing relaxation
parameters, which can avoid the issue of selecting appropriate value of relaxation param-
eter. The global convergence analysis for both iteratively reweighted �1 and �2 algorithms
are provided. We show that every limit point generated by the algorithms must satisfy
the first-order necessary optimality condition for the original unrelaxed problem, instead
of the relaxed problem—a novel result that most current work does not possess. Candes
et al. have put forward several open questions in [8] about the reweighted �1 algorithm,
including under what conditions the reweighted �1 algorithm will converge, when the
iterates have limit point, and the ways of updating ε as the algorithm progresses towards
a solution. Our work provides answers to these questions.

• We have proven that the existence of the cluster point to the algorithm can be guar-
anteed by understanding conditions under which the iterates generated is bounded. The
conditions guaranteeing the boundedness is also given. Conditions for selecting the start-
ing point and the initial relaxation parameters are also provided to guarantee the global
convergence. This makes our methods also apply for cases where the objective is not
coercive.

1.1 Organization

In the remainder of this section, we outline our notation and introduce various concepts that
will be employed throughout the paper. In Sect. 2, we describe our problem of interests and
explain its connection to various existing types of sparsity-inducing techniques. In Sect. 3, we
describe the details of our proposed AIR method and apply it to different types of nonconvex
sparsity-inducing terms. The optimality condition and the global convergence of the proposed
algorithm in different situations are provided in Sect. 4. We discuss implementations of our
methods and the results of numerical experiments in in Sect. 5. Concluding remarks are
provided in Sect. 6.

1.2 Notation and preliminaries

Much of the notation that we use is standard, and when it is not, a definition is provided. For
convenience, we review some of this notation and preliminaries here.

We use 0 to represent the vector filled with all 0s of appropriate dimension. Let Rn be
the space of real n-vectors, Rn+ be the nonnegative orthant of Rn , Rn+ = {x ∈ R

n : x ≥ 0}
and the nonpositive orthant {x ∈ R

n : x ≤ 0}. Moreover, let Rn++ be its interior Rn++ :=
{x ∈ R

n : x > 0}. The set of m × n real matrices is denoted by R
m×n . For a pair of vectors

(u, v) ∈ R
n × R

n , their inner product is written as 〈u, v〉. The set of nonnegative integers
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is denoted by N. Suppose R
n be the product space of subspaces Rni , i = 1, . . . , m with∑m

i=1 ni = n, i.e., it takes decomposition Rn = R
n1 × . . .×R

nm . Given a closed convex set
X ⊂ R

n , the normal cone to X at a point x̄ ∈ X is given by

N (x̄|X) := {z|〈z, x − x̄〉 ≤ 0, ∀x ∈ X}.
The characteristic function of X is defined as

δ(x|X) =
{
0 if x ∈ X ,

+∞ otherwise.

The indicator operator I(·) is an indicator function that takes a value of 1 if the statement is
true and 0 otherwise.

For a given α ∈ R, denote the level set of f as

L(α; f ) := {x ∈ R
n | f (x) ≤ α}.

In particular, we are interested in level set with an upper bound reachable for f :

L( f (x̂); f ) := {x ∈ R
n | f (x) ≤ f (x̂)}.

The subdifferential of a convex function f at x is a set defined by

∂ f (x) = {z ∈ R
n | f (y) − f (x) ≥ 〈z, y− x〉,∀y ∈ R

n}.
Every element z ∈ ∂ f (x) is referred to as a subgradient. To characterize the optimality
conditions for nonsmooth problems, we need to introduce the concepts of Fréchet subdif-
ferentiation. In fact, there are a variety of subdifferentials known by now including limiting
subdifferentials, approximate subdifferentials and Clarke’s generalized gradient, many of
which can be used here for deriving the optimality conditions. The major tool we choose in
this paper is the Fréchet subdifferentials, which were introduced in [3,20] and discussed in
[21].

Definition 1 (Fréchet subdifferential) Let f be a function from a real Banach space into an
extended real line R̄ = R∪ {+∞}, finite at x. The Fréchet subdifferential of f at x, denoted
as ∂F f (x), is the set

∂F f (x) =
{

x∗ ∈ R
n : lim inf

u→x

f (u) − f (x) − 〈x∗,u− x〉
‖u− x‖ ≥ 0

}

.

Its elements are referred to as Fréchet subgradients.

For a composite function r ◦ c(x), where c : Rn → R and r : R → R, denote ∂Fr(c(x))
(or simply ∂Fr(c)) as the Fréchet subdifferential of r with respect to c, and r ′(c(x)) (or simply
r ′(c)) as the derivative of r with respect to c(x) if r is differentiable at c(x).

2 Problem statement and its applications

In this section,we propose a unified formulation of the constrained nonconvex and nonsmooth
sparse optimization problem, and list the instances in some prominent applications.
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2.1 Problem statements

We consider the following nonconvex and nonsmooth sparse optimization problem

min
x∈Rn

f (x) + Φ(x)

s.t. x ∈ X ,
(1)

where f : Rn → R is smooth and convex and X ⊂ R
n is a closed convex set. This type of

problem is a staple for many applications in signal processing [7,25], wireless communica-
tions [34,37] and machine learning [2,16]. For example, in signal processing, f may be the
mean-squared error for signal recovery, X may be a nonnegative constraint for signal [19]; in
wireless communications, f may represent the system performance such as transmit power
consumption, X may be the transmit power constraints and quality of service constraints [38];
in machine learning, f can represent the convex loss function, such as the cross-entropy loss
for logistic regression [15].

In a large amount of applications, the being recovered vector x is expected to have some
sparse property in a structured manner. To handle this type of structured sparsity, various
types of group-based Φ has been studied in [40]. Consider a collection of groups G =
{G1,G2, · · · ,Gm} with |Gi | = ni . The union over all groups covers the full index set and∑m

i=1 ni = n. The structured vector x can be written as

x = [x1, x2, · · · , xn1︸ ︷︷ ︸
xT
G1

, · · · , xn−nm+1, · · · , xn
︸ ︷︷ ︸

xT
Gm

]T .

With these ingredients, the associated group-based function Φ takes the form

Φ(x) =
m∑

i=1

ri (ci (xGi )),

where ci : Rni → R is convex and ri : R → R is concave for each i . Throughout this paper,
we make the following assumptions about f , ri , ci and X .

Assumption 1 The functions f , ri , ci , i = 1, . . . , m, and set X are such that

(i) X is closed and convex.
(ii) f is smooth, convex and bounded below by f on X .
(iii) ri is smooth on R \ {0}, concave and strictly increasing on R+ with ri (−c) = ri (c) and

ri (0) = 0, and is Fréchet subdifferentiable at 0.
(iv) ci is convex and coercive with ci (xi ) ≥ 0,∀x ∈ X where the equality holds if and only

if xi = 0.
(v) The composite function φi = ri ◦ ci (x) = ri (ci (xi )) is concave on regions {x | ci (xi ) ≥

0} and {x | ci (xi ) ≤ 0}.
Remark 1 The symmetry of ri is not a requirement, since ci (x) ≥ 0 is assumed always true;
the purpose of this assumption is to simplify the analysis.

Most existing sparse optimization problems can be reverted to (1). In next subsection,
we describe the important applications of problem (1) and explain the specific forms of the
functions f , ri , ci in the example. Based on different formulations of the composite function
Φ(x), there are a great deal of nonconex sparsity-inducing techniques to promote sparse
solutions, such as the approximations of the �0 norm of x.
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The problems considered here allow the sparse-inducing terms to be non-Lipschitz, and
it also allows the presence of a general convex set constraint. If some components of the
stationary point tend to zero, it is possible that both the Fréchet subdifferentials of the non-
Lipschitz term and the normal direction of the constraint tend to infinity. This leads to
the difficulty of analyzing the convergence of their linear combination (i.e., the optimality
condition residual of the problem).

2.2 Sparsity-inducing Functions

Many applications including signal processing, wireless communications andmachine learn-
ing involve the minimization of the �0-norm of the variables ‖x‖0, i.e., the number of nonzero
components in x. However, this is regarded as an NP-hard problem, thus various approxi-
mations of �0 norm have been proposed. By different choice of the formulation ri and ci ,
there exist many approximations to �0 norm, so that a smooth approximate problem of (1) is
derived with

‖x‖0 ≈ Φ(x) =
n∑

i=1

ri (ci (xi )).

In the following discussion, we only provide the expression of ri on R+, since by Assump-
tion 1, ri can be defined accordingly on R−.

2.2.1 The EXP approximation

The first instance is the feature selection algorithm via concave minimization proposed by
Bradley and Mangasarian [5] with approximation

‖x‖0 ≈
n∑

i=1

1− e−p|xi | with p > 0, (EXP)

where p is chosen to be sufficiently large to promote sparse solutions. The concavity of this
function leads to a finitely terminating algorithm and a more accurate representation of the
feature selection algorithm. It is reported that the algorithms with this formulation obtained
a reduction in error with selected features fewer in number and they are faster compared to
traditional convex feature selection algorithms. For example, we can choose

ci (xi ) = |xi |, ri = 1− e−pci or ci = x2i , ri = 1− e−p
√

ci ,

so that this approximation can be viewed as a specific formulation of Φ.

2.2.2 The LPN approximation

The second instance, which is widely used in many applications currently, is to approximate
the �0 norm by �p quasi-norm [13]

‖x‖0 ≈
n∑

i=1

|xi |p with p ∈ (0, 1) (LPN)
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and p is chosen close to 0 to enforce sparsity in the solutions. Based on this approximation,
numerous applications and algorithms have emerged. Here we can choose

ci (xi ) = |xi |, ri (ci ) = cp
i or ci (xi ) = x2i , ri (ci ) = cp/2

i

in the formulation of Φ.

2.2.3 The LOG approximation

Another option for approximating �0 norm, proposed in [26], is to use the log-sum approxi-
mation

‖x‖0 ≈
n∑

i=1

log (1+ p|xi |) with p > 0, (LOG)

and setting p sufficiently large leads to sparse solutions. We can choose

ci (xi ) = |xi |, ri (ci ) = log (1+ pci ),

or

ci (xi ) = x2i , ri (ci ) = log(1+ p
√

ci ).

2.2.4 The FRA approximation

The approximation technique proposed in [13] suggests

‖x‖0 ≈
n∑

i=1

|xi |
|xi | + p

, with p > 0, (FRA)

and p is required to be sufficiently small to promote sparsity. One can use

ci (xi ) = |xi |, ri (ci ) = ci

ci + p
,

or

ci xi = x2i , ri (ci ) =
√

ci√
ci + p

.

2.2.5 The TAN approximation

Candès et al. propose an approximation to the �0 norm in [8]

‖x‖0 ≈
n∑

i=1

arctan(p|xi |), with p > 0, (TAN)

and sufficiently small p can cause sparsity in the solution. The function arctan is bounded
above and �0-like. It is reported that this approximation tends to work well and often better
than the log-sum (LOG). In this case, we can choose

ci (xi ) = |xi |, ri (ci ) = arctan (pci ),

or

ci (xi ) = x2i , ri (ci ) = arctan (p
√

ci ).
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2.2.6 The SCAD andMCP approximation

Another nonconvex sparsity-inducing technique needs to be mentioned is the SCAD regu-
larization proposed in [12], which require the derivative of φi to satisfy

ci (xi ) = |xi |, φ′
i (ci ) = λ{I(ci ≤ λ) + (aλ − ci )+

(a − 1)λ
I(ci > λ)}, (SCAD)

for some a > 2, where often a = 3.7 is used. Alternatively, the MCP [43] regularization
uses

ci (xi ) = |xi |, φ′
i (ci ) = (aλ − ci )+/a for some a ≥ 1. (MCP)

2.2.7 The group structure

These sparsity-inducing functions can also take into account group structures. For example,
�p,q -norm with p ≥ 1 and 0 < q < 1 [18] is defined as

‖x‖p,q =
(

m∑

i=1

‖xGi ‖q
p

)1/q

.

Therefore, we can choose

Φ(x) = ‖x‖q
p,q , with ci (xGi ) = ‖xGi ‖p and ri (ci ) = cq

i .

2.3 Problem analysis

There have been various literatures for solving the nonconvex and nonsmooth sparse opti-
mization problems. In [9,24]WotaoYin et al. have considered solve the sparse signal recovery
problem by using the unconstrained nonconvex �p normmodel, proposed the associated iter-
ative reweighted unconstrained �p algorithm and provided the convergence analysis for the
reweighted �2 case. In [28] Zhaosong Lu have provied the first-order optimality condition for
the unconstrained nonconvex �p norm problem, and convergence analysis for both �1 and �2
types reweighted algorithm. However, it is not clear for analyzing the first-order optimalizty
condition for the constrained nonconvex and nonsmooth sparse optimization problem (1). In
order to address this issue, we propose the AIR algorithm in Sect. 3, provide the first-order
optimality condition for (1) and the convergence analysis for the AIR algorithm in §4.

3 Adaptively iterative reweighted algorithm

In this section, we present the adaptively iterative reweighted algorithm for minimizing the
nonconvex and nonsmooth sparse optimization problem (1).

3.1 Smoothingmethod

In this subsection, we show how we deal with the nonsmoothness. Before proceeding, we
define the following functions for x ∈ X . Problem (1) can be rewritten as

min
x

J0(x) := f (x) +
∑

i∈G
ri (ci (xi )) + δ(x|X). (2)
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Adding relaxation parameter ε ∈ R
m+ to smooth the (possibly) nondifferentiable ri , we

propose the relaxed problem as

min
x

J (x; ε) := f (x) +
∑

i∈G
ri (ci (xi ) + εi ) + δ(x|X), (3)

and in particular, J (x; 0) = J0(x). Here we extend the notation of φi and use φi (xi ; εi ) to
denote the relaxed sparsity-inducing function, so that

φi (xi ; εi ) := ri (ci (xi ) + εi ),

Φ(x; ε) :=
∑

i∈G
φi (xi ; εi ) and φi (xi ) = φi (xi ; 0).

The following theorem shows that the pointwise convergence of J (x; ε) to J0(x) on X as
ε → 0.

Theorem 1 For any x ∈ X and ε ∈ R++, it holds true that

J0(x) ≤ J (x; ε) ≤ J0(x) +
∑

ci (xi )=0

ri (εi ) +
∑

ci (xi )>0

r ′(ci (xi ))εi .

This implies that J (x; ε) pointwise convergence to J0(x) on X as ε → 0.

Proof The first inequality is trivial, so we only have to show the second inequality. Since
r( · ) is concave on R+, we have

ri (z) ≤ ri (z0) + r ′
i (z0)(z − z0) for any z, z0 ∈ R+, (4)

Therefore,

J (x; ε) = f (x) +
∑

i∈G
ri (ci (xi ) + εi )

= f (x) +
∑

ci (xi )=0

ri (εi ) +
∑

ci (xi )>0

ri (ci (xi ) + εi )

≤ f (x) +
∑

ci (xi )=0

ri (εi ) +
∑

ci (xi )>0

ri (ci (xi )) +
∑

ci (xi )>0

r ′(ci (xi ))εi

=J0(x) +
∑

ci (xi )=0

ri (εi ) +
∑

ci (xi )>0

r ′(ci (xi ))εi ,

where the inequality follows by (4). This completes the first statement.
On the other hand, since

lim
ε→0

∑

ci (xi )=0

ri (εi ) +
∑

ci (xi )>0

r ′(ci (xi ))εi = 0,

it holds

lim
ε→0

J (x; ε) = J0(x), x ∈ X .

��
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3.2 Adaptively iterative reweighted algorithm

A convex and smooth function G(x̃,ε̃)(x) can be derived as an approximation of J (x̃, ε̃) at x̃
by linearizing ri at ci (x̃i ) + ε̃i to have the subproblem

G(x̃,ε̃)(x) := f (x) +
∑

i∈G
wi (x̃i , ε̃i )ci (xi ) + δ(x|X), (5)

where the weights are given by

wi (x, εi ) = r ′
i (ci (xi ) + εi ), i ∈ G.

Note that the relaxation parameter can be simply chosen as ε = 0 if r is smooth at 0.
At iterate xk , the new iterate is obtained by

xk+1 ∈ argmin
x

G(xk ,εk )(x).

Therefore, xk+1 satisfies optimality condition

0 ∈ ∂G(xk ,εk )(x
k+1).

The relaxation parameter is selected such that εk+1 ≤ εk and possibly driven to 0 as the
algorithm proceeds.

Our proposed Adaptively Iterative Reweighted algorithm for nonconvex and nonsmooth
sparse optimization problems is stated in Algorithm 1.

Algorithm 1 AIR: Adaptively Iterative Reweighted

1: (Initialization) Choose x0 ∈ X and ε0 ∈ R
n++. Set k = 0.

2: (Subproblem Solution) Compute new iterate

xk+1 ∈ argmin G
(xk ,εk )

(x).

3: (Reweighting) Choose εk+1 ∈ (0, εk ].
4: Set k ← k + 1. Go to Step 2.

3.3 �1-Algorithm& �2-Algorithm

In this subsection, we describe the details of how to construct G(x̃,ε̃)(x) for the nonconvex and
nonsmooth sparsity-inducing functions (EXP)–(MCP) in Sect. 2. Notice that the relaxation
parameter εi could set as 0 if lim

ci→0+ r ′
i (ci ) < +∞. For simplicity, denote w̃i = wi (x̃i , ε̃i ). In

Table 1, we provide the explicit forms of the weights w̃i at (x̃i , ε̃i ) when choosing ci (xi ) =
‖xi‖1 and ci (xi ) = ‖xi‖22 for each case, so that the corresponding subproblem is an �1-norm
sparsity-inducing problem and an �2-norm sparsity-inducing problem

G(x̃,ε̃)(x) = f (x) +
∑

i∈G
w̃i‖xi‖1 + δ(x|X) and

G(x̃,ε̃)(x) = f (x) +
∑

i∈G
w̃i‖xi‖22 + δ(x|X).
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Table 1 Different AIR weights based on different choice of ri and ci

φi ri (ci ) w̃i ri (∞) r ′i (0+)

(EXP) 1− e−pci pe−p(‖x̃i ‖1) < ∞ < ∞
1− e−p

√
ci pe−px̃i

2x̃i
< ∞ < ∞

(LPN) c p
i p(‖x̃i‖1 + ε̃i )

p−1 +∞ +∞
c p/2

i
p
2 (‖x̃i‖22 + εi )

p
2 −1 +∞ +∞

(LOG) log(1+ pci )
p

1+p‖x̃i ‖1 +∞ < ∞
log(1+ p

√
ci )

p

2
√
‖x̃i ‖22+ε̃i (1+p

√
‖x̃i ‖22+ε̃i )

+∞ +∞

(FRA) ci
ci+p

p
(‖x̃i ‖1+p)2

< ∞ < ∞
√

ci√
ci+p

p

2
√
‖x̃i ‖22+εi (

√
‖x̃i ‖22+εi+p)2

< ∞ +∞

(TAN) ci
ci+p

p
1+p2(‖x̃i ‖1)2 < ∞ < ∞

c p/2
i

p

2
√
‖x̃i ‖22+εi (1+p2(‖x̃i ‖22+εi ))

< ∞ +∞

For each sparsity-inducing function, we consider ci (xi ) = ‖xi‖1 in the first row and ci (xi ) =
‖xi‖22 in the second row. We also list the properties of the ri with ci → ∞ and its side-
derivative of ri at 0 in the fourth and fifth columns. This is because these properties can lead
to different behaviors of each AIR as shown in the theoretical analysis.

As for SCAD and MCP, the explicit forms of ri are not necessary to be known, but it can
be easily verified using r ′

i that Assumption (1) still holds true. The reweighted �1 subproblem
for SCAD has weights

w̃i = λ{I(|x̃i | + ε̃i ≤ λ) + (aλ − ‖x̃i‖1 − ε̃i )+
(a − 1)λ

I(‖x̃i‖1 + ε̃i > λ)}.

The weights of reweighted �2 subproblem for SCAD are

w̃i = λ

2
√
‖x̃i‖22 + εi )

{I(
√
‖x̃i‖22 + εi ) ≤ λ)

+
(aλ −

√
‖x̃i‖22 + εi ))+

(a − 1)λ
I(

√
‖x̃i‖22 + εi ) > λ)}.

As for MCP, the reweighted �1 subproblem has weights

w̃i = (aλ − ‖x̃i‖1 − ε̃i )+/a,

and the weights for reweighted �2 subproblem are

w̃i = (aλ −
√
‖x̃i‖22 + εi )+/a.
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4 Convergence analysis

In this section, we analyze the global convergence of our proposed AIR. First we provide a
unified first-order optimality condition for the constrained nonconvex and nonsmooth sparse
optimization problem (1). Then we establish the global convergence anlaysis followed by
the existence of cluster points.

For simplicity, denote wk
i = wi (xk, εk

i ),wk
i = wk

i eni , w
k = [wk

1;wk
2; . . . ;wk

m], and
Wk = diag(wk), and so forth.

4.1 First-order optimality condition

In this subsection, we derive conditions to characterize the optimal solution of (1). Due
to the nonconvex and nonsmooth nature of the sparsity-inducing function, we use Fréchet
subdifferentials as the major tool in our analysis. Some important properties of Fréchet
subdifferentials derived in [21] that will be used in this paper are summarized below. Part
(i)-(iv) are Proposition 1.1, 1.2, 1.10, 1.13 and 1.18 in [21], respectively.

Proposition 1 The following statements about Fréchet subdifferentials is true.

(i) If f is differentiable at x with gradient ∇ f (x), then ∂F f (x) = {∇ f (x)}.
(ii) If f is convex, then ∂F f (x) = ∂ f (x).

(iii) If f is Fréchet subdifferential at x and attains local minimum at x, then

0 ∈ ∂F f (x).

(iv) Let r(·) be Fréchet subdifferentiable at c∗ = c(x∗) with c(x) being convex, then r ◦ c(x)
is Fréchet subdifferentiable at x∗ and that

y∗∂c(x∗) ⊂ ∂Fr ◦ c(x∗)

for any y∗ ∈ ∂Fr(c∗).
(v) N (x|X) = ∂Fδ(x|X) if X is closed and convex.

The properties of Fréchet subdifferentials in Proposition 1 can be used to characterize the
optimal solution of (1). The following theorem is straightforward from Proposition 1, which
describes the necessary optimality condition of problem (1).

Theorem 2 If (3) attains a local minimum at x, then it holds true that

0 ∈ ∂F J (x; ε) = ∇ f (x) + ∂FΦ(x; ε) + N (x|X). (6)

Next we shall further investigate the properties of ∂Fφ(x; ε).
Lemma 1 It holds that

∇ f (x) +
∏

i∈G
yi∂ci (xi ) + N (x|X) ⊂ ∂F J (x; ε)

for any yi ∈ ∂Fri (ci (xi ) + εi ).

Proof Note that φ(x; ε) takes structure
Φ(x; ε) =

∑

i∈G
φi (xi ; εi ) with φi (xi ; εi ) = ri (ci (xi ) + εi ).
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Thus we can write the Fréchet subdifferentials of Φ

∂FΦ(x; ε) =
∏

i∈G
∂Fφi (xi ; εi )

= ∂Fφ1(x1; ε1) × . . . × ∂Fφm(xm; εm),

meaning that

∂F J (x; ε) = ∇ f (x) +
∏

i∈G
∂Fφi (xi ; εi ) + N (x|X).

On the other hand, every ci is assumed to be convex. From Proposition 1, we know that

yi∂ci (xi ) ⊂ ∂Fφi (xi ; εi ), ∀yi ∈ ∂Fri (ci (xi ) + εi ),

completing the proof. ��
If ci (xi ) > 0 or εi > 0, ri is differentiable at ci + εi so that ∂Fφi (xi ; εi ) = r ′

i (ci (x∗i ) +
εi )∂ci (x∗) by Proposition 1. Of particular interests are the properties of ∂Fri (0). Notice that
r ′

i is decreasing on R++. We investigate ∂Fφi (xi ; εi ) bases on the limits (possibly infinite)
in the lemma below.

Lemma 2 Let y∗
i := lim

ci→0+
r ′

i (ci ) ≥ 0. It holds true that

⎧
⎪⎨

⎪⎩

∂Fri (ci ) = r ′
i (ci ) if ci > 0

∂Fri (0) = [−y∗
i , y∗

i ], if y∗
i < +∞,

∂Fri (0) = R, if y∗
i = +∞,

so that

1. If ci (x∗i ) + εi > 0,

∂Fφi (xi ; εi ) = r ′
i (ci (x∗i ) + εi )∂ci (x∗i );

2. If ci (x∗i ) + εi = 0, y∗
i < +∞,

yi∂ci (x∗i ) ⊂ ∂Fφi (xi ; εi ), ∀yi ∈ [−y∗
i , y∗

i ];
3. If ci (x∗i ) + εi = 0, y∗

i = +∞,

yi∂ci (x∗i ) ⊂ ∂Fφi (xi ; εi ), ∀yi ∈ R.

Proof The statement about the case that ci (x∗i ) > 0 is obviously true. We only need consider
the case that ci (x∗i ) = 0. Notice that

lim inf
ci→0+

ri (ci ) − ri (0)

ci
= lim inf

0<c̃i <ci
ci→0+

r ′
i (c̃i ) = r ′

i (0+) = y∗
i ≥ 0

by Assumption 1(i i i). It can be easily verified by [21, Proposition 1.17] that

∂Fri (0) =
{
[−y∗

i , y∗
i ] if y∗

i < +∞,

R if y∗
i = +∞.

It then follows from Proposition 1(iv) that
{

yi∂ci (x∗i ) ⊂ ∂Fφi (xi ; εi ),∀yi ∈ [−y∗
i , y∗

i ], if y∗
i < +∞,

yi∂ci (x∗i ) ⊂ ∂Fφi (xi ; εi ),∀yi ∈ R, if y∗
i = +∞.
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��
Note that we only require ε ∈ R+. If ε = 0, all the results we have derived for J ( · ; ε) in

this subsection also hold for J0.

4.2 Global convergence of the AIR algorithm

In this subsection, we analyze the global convergence of AIR under Assumption 1. First of
all, we need to show that the subproblem always has a solution. For ε̂ ∈ R++, the subproblem
is obviously well-defined on X since the weights wk

i = r ′
i (x

k
i + εk

i ) < +∞. To guarantee
the proposed AIR is well defined, we must show the existence of the subproblem solution.

We have the following lemma about the solvability of the subproblems.

Lemma 3 For εk ∈ R++, argminx G(xk ,εk )(x) is nonempty, so that xk+1 is well-defined.

Proof Pick x̃ ∈ X and let α := G(xk ,εk )(x̃). The level set

{x ∈ X |G(xk ,εk )(x) ≤ G(xk ,εk )(x̃)}
must be nonempty since it contains x̃, and bounded due to the coercivity of wk

i ci , i ∈ G and
the lower boundedness of f on X . This completes the proof by [33, Theorem 4.3.1]. ��

We have the following key facts about solutions to (5), which implies that the new iterate
xk+1 causes a decrease in the model J (x, εk).

Lemma 4 Let x̃ ∈ X, ε̂, ε̃ ∈ R
m++ with ˆε ≤ε̃ and w̃i = wi (x̃i , ε̃i ) for i ∈ G.

Suppose that x̂ ∈ argminx∈X G(x̃,ε̃)(x). Then, for any k, it holds true that

J (x̂, ε̂) − J (x̃, ε̃) ≤ G(x̃,ε̃)(x̂) − G(x̃,ε̃)(x̃) ≤ 0.

Proof First of all, x̂ ∈ argminx G(x̃,ε̃)(x), so that G(x̃,ε̃)(x̂) − G(x̃,ε̃)(x̃) ≤ 0. Hence

J (x̂; ε̂) ≤ J (x̂; ε̃) = f (x̂) +
∑

i∈G
ri (ci (x̂i ) + ε̃i )

≤ f (x̃) + f (x̂) − f (x̃) +
∑

i∈G
ri (ci (x̃) + ε̃i ) +

∑

i∈G
w̃i (ci (x̂) − ci (x̃))

= J (x̃; ε̃) + [G(x̃,ε̃)(x̂) − G(x̃,ε̃)(x̃)],

where the second inequality follows from (4). ��
Lemma 4 indicates J (x; ε) is monotonically decreasing for any x0 ∈ X , ε0 ∈ R

m . Define
the model reduction

ΔG(xk ,εk )(x
k+1) = G(xk ,εk )(x

k) − G(xk ,εk )(x
k+1).

The next lemma indicates this model reduction converges to zero, which naturally follows
from Lemma 4.

Lemma 5 Suppose x0 ∈ X, ε0 ∈ R
m++, and {xk} are generated by AIR. The following

statements hold true

(i) The sequence {xk} ⊂ L(J (x0; ε0); J0).
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(ii) lim
k→∞ΔG(xk ,εk )(x

k+1) → 0.

Proof Part (i) follows naturally from the fact that

J0(xk) ≤ J (xk, εk) ≤ J (x0, ε0),

for all k ∈ N by Lemma 4.
For part (i i), by Assumption 1, J̃ := inf

k
J (xk; εk) > −∞. It follows from Lemma 4,

that

J (xk+1, εk+1) ≤ J (xk, εk) − ΔG(xk ,εk )(x
k+1).

Summing up both sides of the above inequality from 0 to t , we have

0 ≤
t∑

k=1

ΔG(xk ,εk )(x
k+1)

≤ J (x0, ε0) − J (xt+1, εt+1) ≤ J (x0, ε0) − J̃ .

Letting t → ∞, we know part (i i) holds true. ��

4.2.1 Convergence analysis for bounded weights

We first analyze the convergence when εk → ε∗ ∈ R++ or lim
ci→0+

r ′
i (ci ) < +∞, i ∈ G. In

this case, wk
i → w∗

i < +∞ if xk
i → 0. The “limit subproblem” takes form

min
x

G̃(x̃,ε̃)(x) := f (x) +
∑

i∈G
w̃i ci (xi ) + δ(x|X). (7)

The existence of the solution to (7) is shown in the next lemma.

Lemma 6 For ε̃ ∈ R++, the optimal solution set of (7) is nonempty. Furthermore, if x̃ is an
optimal solution of (7), then x̃ also satisfies the first-order optimality condition of (3).

Proof Notice that x̃ is feasible for (7) by the definition of G̃. The level set

{x ∈ X | G̃(xk ,εk )(x) ≤ G̃(xk ,εk )(x̃)}
must be nonempty since it contains x̃ and bounded due to the coercivity of w̃i ci , i ∈ G and
the lower boundedness of f on X . This completes the proof by [33, Theorem 4.3.1].

Therefore, any optimal solution x must satisfies

0 = ∇ f (x)i + zi + νi , i ∈ G
where ν ∈ N (x|X), zi = w̃i ξ i with

w̃i ∈ ∂Fri (ci (x̃i ) + ε̃i ), ξ i ∈ ∂ci (xi ), i ∈ G.

The KKT conditions thus can be rewritten as following by Lemma 2

0 = ∇ f (x)i + w̃i ξ i + νi ,

w̃i ∈ ∂Fri (ci (x̃i ) + ε̃i ), ξ i ∈ ∂ci (xi ),

where i ∈ G. If x̃ is an optimal solution, then we have

0 ∈ ∇ f (x̃) + ∂FΦ(x̃; ε̃) + N (x̃|X),

implying x̃ is optimal for J ( · ; ε̃). ��
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Now we are ready to prove our main result in this section.

Theorem 3 Suppose {xk}∞k=0 is generated by AIR with initial point x0 ∈ X and relaxation
vector ε0 ∈ R

m++ with εk → ε∗. Assume either

ε∗i > 0 or r ′(0+) < +∞, i ∈ G
is true. Then if {xk} has any cluster point, it satisfies the optimality condition (6) for J (x; ε∗).
Proof Let x∗ be a cluster point of {xk}. From Lemma 6, it suffices to show that x∗ ∈
argminx G̃(x∗,ε∗)(x). We prove this by contradiction. Assume that there exists a point x̄
such that ε := G̃(x∗,ε∗)(x∗) − G̃(x∗,ε∗)(x̄) > 0. Suppose {xk}S → x∗, S ⊂ N. Based on
Lemma 5(i i), there exists k1 > 0, such that for all k > k1

G̃(xk ,εk )(x
k) − G̃(xk ,εk )(x

k+1) ≤ ε/4. (8)

To derive a contradiction, notice that xk
i

S→ x∗i and wk
i

S→ w∗
i . There exists k2 such that for

all k > k2, k ∈ S,
∑

i∈G
(w∗

i − wk
i )ci (x̄i ) ≥ −ε/12,

∑

i∈G
(wk

i ci (xk
i ) − w∗

i ci (x∗i )) ≥ −ε/12,

f (xk) − f (x∗) ≥ −ε/12.

Therefore, for all k > k2, k ∈ S,
G̃(x∗,ε∗)(x∗) − G̃(xk ,εk )(x̄)

= [ f (x∗) +
∑

i∈G
w∗

i ci (x∗i )] − [ f (x̄) +
∑

i∈G
[w∗

i − (w∗
i − wk

i )]ci (x̄i )

= [G̃(x∗,ε∗)(x∗) − G̃(x∗,ε∗)(x̄)] +
∑

i∈G
(w∗

i − wk
i )ci (x̄i ),

≥ [G̃(x∗,ε∗)(x∗) − G̃(x∗,ε∗)(x̄)] − ε/12

= ε − ε/12 = 11ε/12,

and that

G̃(xk ,εk )(x
k) − G̃(x∗,ε∗)(x∗)

= [ f (xk) +
∑

i∈G
wk

i ci (xk
i )] − [ f (x∗) +

∑

i∈G
w∗

i ci (x∗i )]

≥ −ε/6

Hence, for all k > max(k1, k2), k ∈ S, it holds that
G̃(xk ,εk )(x

k) − G̃(xk ,εk )(x̄)

= G̃(xk ,εk )(x
k) − G̃(x∗,ε∗)(x∗) + G̃(x∗,ε∗)(x∗) − G̃(xk ,εk )(x̄)

= 11ε/12− ε/6 = 3ε/4,

contradicting with (8). Therefore, x∗ ∈ argminx G̃(x∗,0)(x). By Lemma 6, x∗ satisfies the
first-order optimality for (3). ��

123



734 Journal of Global Optimization (2021) 81:717–748

Remark 2 Note that there are several choices of φi satisfy r ′(0+) < +∞, i ∈ G as shown
in Table 1. For example, φi takes the (EXP) form with both ci (xi ) = ‖xi‖1 and ci (xi ) =
‖xi‖22, φi takes the (LOG) form with ci (xi ) = ‖xi‖1 and φi takes the (TAN) form with
ci (xi ) = ‖xi‖1.
Remark 3 The convexity of f is not necessary if xk+1 is found as the global minimizer of
(3). In this case, the global convergence we have derived so far can be modified accordingly,
and in the statement of Lemma 6, a global minimizer x̃ of (7) implies its optimality of (3).

4.2.2 Convergence analysis for reweighed �1 and �2 with vanishing�

We have shown the convergence of AIR with fixed ε. By Theorem 1, we can choose suffi-
ciently small ε andminimize J (·; ε) instead of J0 to obtain an approximate solution.However,
as also shown by Theorem 1, J (·; ε) converges to J0 only pointwisely. It thenmay be difficult
to assert that the minimizer of J (·; ε) is sufficiently close to the minimizer of J0 for given ε.
Therefore, we consider to minimize a sequence of J (·; ε) with ε driven to 0.

As the algorithm proceeds, of particular interest is the properties of the “limit subproblem”
as the (sub)sequence of iterates converges. Let L := {i | r ′

i (0+) = +∞}. Notice that it may
happen wk

i → ∞ if xk
i → 0 and εk

i → 0, so that G may be not well-defined. Therefore we
consider an alternative form of the “limit subproblem” for ε̃ = 0

min
x

G̃(x̃,0)(x) := f (x) +
∑

i∈N (x̃,0)

w̃i ci (xi ) + δ(x|X),

s.t. xi = 0, i ∈ A(x̃, 0),

(9)

where A(x̃, 0) := {i | x̃i = 0, ε̃i = 0} ∩ L and N (x̃, 0) := G \ A(x̃, 0). The existence of
the solution to (9) is shown in the next lemma.

Lemma 7 For ε̃ = 0, the optimal solution set of (9) is nonempty. Furthermore, if x̃ is an
optimal solution of (9), then x̃ also satisfies the first-order optimality condition of (2).

Proof Notice that x̃ is feasible for ( general.sub.alter) by the definition of G̃. The level set

{x ∈ X | G̃(x̃,0)(x) ≤ G̃(x̃,0)(x̃); xi = 0, i ∈ A(x̃, 0)}
must be nonempty since it contains x̃ and bounded due to the coercivity of w̃i ci , i ∈ G and
the lower boundedness of f on X . This completes the proof by [33, Theorem 4.3.1].

Obviously Slater’s condition holds at any feasible point of ( general.sub.alter). Therefore,
any optimal solution x must satisfies the KKT conditions

0 = ∇ f (x)i + zi + νi , i ∈ G
with ν ∈ N (x|X), zi = ỹi ξ i . For the case ci (xi ) = ‖xi‖1, let ỹi := w̃i = r ′

i (ci (x̃i )), ξ i ∈
∂ci (xi ), i ∈ N (x̃, 0). Now for i ∈ A(x̃, 0), let ỹi = ‖zi‖∞ and ξ i = zi/‖zi‖∞ so that
ξ i ∈ ∂ci (0) = ∂ci (x̃i ). For the case ci (xi ) = ‖xi‖22, let ỹi := w̃i = r ′

i (ci (x̃i )), ξ i = 2x̃i , i ∈
N (x̃, 0). Now for i ∈ A(x̃, 0), let ỹi = ‖zi‖∞ and ξ i = zi/‖zi‖∞ so that ξ i ∈ ∂‖0‖1. The
KKT conditions can be rewritten as

0 = ∇ f (x)i + ỹi ξ i + νi ,

when i ∈ N (x̃, 0) :
{

yi ∈ ∂Fri (ci (x̃i )),

ξ i ∈ ∂ci (xi )
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when i ∈ A(x̃, 0) :
{

yi ∈ ∂Fri (
√

ci (x̃i )),

ξ i ∈ ∂
√

ci (xi )

For both cases, the KKT conditions can be rewritten as

0 = ∇ f (x)i + ỹi ξ i + νi ,

yi ∈ ∂Fri (ci (x̃i )),

ξ i ∈ ∂ci (xi ), i ∈ G

by Lemma subdiffr. If x̃ is an optimal solution, then we have

0 ∈ f (x̃) + ∂Fφ(x̃; 0) + N (x̃|X),

implying x̃ is optimal for J0( · ). ��

Now we are ready to prove our main result in this section.

Theorem 4 Suppose sequence {xk}∞k=0 is generated by AIR �1-algorithm with initial point
x0 ∈ X and relaxation vector ε0 ∈ R

m++. If {xk} has any cluster point x∗, then it satisfies the
optimality condition for J0(x).

Proof Let x∗ be a cluster point of {xk} and lim
k→∞ εk = 0. There exists k0 > 0 such that for

all k > k0, εk = 0. From Lemma 7, it suffices to show that x∗ ∈ argminx G̃(x∗,0)(x). We
prove this by contradiction. Assume that there exists a point x̄ such that ci (x̄i ) = 0 for all
i ∈ A(x∗, 0) and G(x∗,0)(x∗) − G(x∗,0)(x̄) > ε > 0. Suppose {xk}S , S ⊂ N. Based on
Lemma 5(i i), there exists k1 > 0, such that for all k > k1

G̃(xk ,εk )(x
k) − G̃(xk ,εk )(x

k+1) ≤ ε/4. (10)

Notice that xk
i

S→ x∗i and wk
i

S→ w∗
i . To derive a contradiction, there exists k2 > k0 such that

for all k > k2, k ∈ S,
∑

i∈N (x∗,0)
(w∗

i − wk
i )ci (x̄i ) > −ε/12,

∑

i∈N (x∗,0)
(wk

i ci (xk
i ) − w∗

i ci (x∗i )) > −ε/12,

f (xk) − f (x∗) > −ε/12.

Therefore, for all k > k2, k ∈ S,
G̃(x∗,0)(x∗) − G̃(xk ,0)(x̄)

= [ f (x∗) +
∑

i∈N (x∗,0)
w∗

i ci (x∗i )] − [ f (x̄) +
∑

i∈N (x∗,0)
[w∗

i − (w∗
i − wk

i )]ci (x̄i )]

= [G̃(x∗,0)(x∗) − G̃(x∗,0)(x̄)] +
∑

i∈N (x∗,0)
(w∗

i − wk
i )ci (x̄i ),

≥ [G̃(x∗,0)(x∗) − G̃(x∗,0)(x̄)] − ε/12

≥ ε − ε/12 = 11ε/12,
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and that

G̃(xk ,0)(x
k) − G̃(x∗,0)(x∗)

= [ f (xk) +
∑

i∈A(x∗,0)
wk

i ci (xk
i ) +

∑

i∈N (x∗,0)
wk

i ci (xk
i )]

− [ f (x∗) +
∑

i∈N (x∗,0)
w∗

i ci (x∗i )]

≥ [ f (xk) +
∑

i∈N (x∗,0)
wk

i ci (xk
i )] − [ f (x∗) +

∑

i∈N (x∗,0)
w∗

i ci (x∗i )]

≥ −ε/6

Hence, for all k > max(k1, k2), k ∈ S, it holds that
G̃(xk ,0)(x

k) − G̃(xk ,0)(x
k+1)

= G̃(xk ,0)(x
k) − G̃(x∗,0)(x∗) + G̃(x∗,0)(x∗) − G̃(xk ,0)(x̄)

= 11ε/12− ε/6 = 3ε/4,

contradicting with (10). Therefore, x∗ ∈ argminx G̃(x∗,0)(x). By Lemma 7, x∗ satisfies the
first-order optimality for (3). ��

4.3 Existence of cluster points

We will show that our proposed algorithm AIR is a descent method for the function J (x, ε).
Consequently, both the existence of solutions to (1) aswell as the existence of the cluster point
to AIR can be guaranteed by understanding conditions under which the iterates generated by
AIR is bounded. For this purpose, we need to investigate the asymptotic geometry of J and X .
In the following a series of results, we discuss the conditions guaranteeing the boundedness of
L(J (x0; ε0); J0). The concept of horizon cone is a useful tool to characterize the boundedness
of a set, which is defined as follows.

Definition 2 [35, Definition 3.3] Given Y ⊂ R
n , the horizon cone of Y is

Y∞ := {z | ∃tk ↓ 0, {yk} ⊂ Y such that tkyk → z}.
We have the basic properties about horizon cones given in the following proposition,

where the first case is trivial to show and others are from [35].

Proposition 2 The following hold:

(i) If X ⊂ Y ⊂ R
n, then X∞ ⊂ Y∞.

(ii) [35, Theorem 3.5] The set Y ⊂ R
n is bounded if and only if Y∞ = {0}.

(iii) [35, Exercise 3.11] Given Yi ⊂ R
ni for i ∈ G, we have (Y1× . . .×Ym)∞ = Y∞

1 × . . .×
Y∞

m .
(iv) [35, Theorem 3.6] If C ⊂ R

n is non-empty, closed, and convex, then

C∞ = {z | C + z ⊂ C}.
Next we investigate the boundedness of L(J (x0; ε0), J0), and provide upper and lower

estimates of L(J (x0; ε0), J0). For this purpose, define

H(x0, ε0) := {x̄ | x̄ ∈ X∞, x̄ ∈ L( f (x0); f )∞,

x̄i ∈ L(ci (x0i ) + ε0i ; ci )
∞, i ∈ G}, and
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H̃(x0, ε0) := X∞ ∩ L(J (x0; ε0); f )∞

∩ (
∏

i∈G
L(J (x0; ε0) − f ; ri ◦ ci )

∞).

We now prove the following result about the lower level sets of L(J (x0; ε0), J0).

Theorem 5 Let x0 ∈ X and ε0 ∈ R
m++. Then

L(ri (ci (x0i ) + ε0i ); ri ◦ ci ) = L(ci (x0i ) + ε0i ; ci )

for i ∈ G. Moreover, it holds that

Ĥ(x0, ε0) ⊂ L(J (x0; ε0); J0)
∞. (11)

Furthermore, suppose f := infx∈X f (x) > −∞. Then

L(J (x0; ε0); J0)
∞ ⊂ H̃(x0, ε0). (12)

Proof The convexity of L(x0i ; ri (ci ( · ) + ε0i )) is by the fact that

xi ∈ L(ri (ci (x0i ) + ε0i ); ri ◦ ci )

⇐⇒ ri (ci (xi )) ≤ ri (ci (x0i ) + ε0i )

⇐⇒ ci (xi ) ≤ ci (x0i ) + ε0i

⇐⇒ xi ∈ L(ci (x0i ) + ε0i ; ci ),

where the second equivalence is from the monotonic increasing property of ri . Notice that
L(ci (x0i ) + ε0i ; ci ) is convex.

Now we prove (11). Let x ∈ L(J (x0; ε0); J0) and x̄ be an element of Ĥ(x0, ε0).

x + λx̄ ∈ X , x + λx̄ ∈ L( f (x0); f )∞,

and

xi + λx̄i ∈ L(ci (x0i ) + ε0i ; ci )
∞.

Therefore, it holds that

J0(x + λx̄) = f (x + λx̄) +
∑

i∈G
ri (ci (xi + λx̄i ))

≤ f (x0) +
∑

i∈G
ri (ci (x0i ) + ε0i )

= J (x0; ε0).
Consequently, x̄ ∈ L(J (x0; ε0); J0), proving (11).

For (12), let x̄ ∈ L(J (x0; ε0); J0)∞. We need to show that x̄ is an element of H̃(x0, ε0).
For this, we may as well assume that x̄ �= 0. By the fact that L(J (x0; ε0); J0)∞, there exists
tk ↓ 0 and {xk} ⊂ X such that J0(xk) ≤ J (x0; ε0) and tkxk → x̄. Consequently, x̄ ∈ X∞.
Hence

L(J (x0; ε0); J0)
∞ ⊂ X∞. (13)

On the other hand, let x̃ ∈ L(J (x0; ε0); J0). It then follows that

f (x̃) = J0(x̃) −
∑

i∈G
ri (ci (x̃i )) ≤ J0(x̃) ≤ J (x0; ε0),
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where the first inequality is by the fact that ri ≥ 0. Consequently, x̃ ∈ L(J (x0; ε0); f ),
implying L(J (x0; ε0); J0) ⊂ L(J (x0; ε0); f ). Hence

L(J (x0; ε0); J0)
∞ ⊂ L(J (x0; ε0); f )∞. (14)

Now consider ci . We have for i ∈ G

ri ◦ ci (x̃i ) = J0(x̃) − f (x̃) −
∑

j∈G, j �=i

ri (ci (x̃i )) ≤ J (x0; ε0) − f ,

implying x̃i ∈ L(J (x0; ε0); ri ◦ ci ), i ∈ G. Therefore,

L(J (x0; ε0); J0) ⊂
∏

i∈G
L(J (x0; ε0) − f ; ri ◦ ci ),

This implies that

L(J (x0; ε0); J0)
∞ ⊂ (

∏

i∈G
L(J (x0; ε0) − f ; ri ◦ ci ))

∞

=
∏

i∈G
L(J (x0; ε0) − f ; ri ◦ ci )

∞,

which, combined with (13) and (14), yields (12). ��

The following results follow directly from Theorem 5.

Corollary 1 If there exists x̄ �= 0 such that

x̄ ∈ X∞, x̄ ∈ L( f (x0); f )∞, x̄i ∈ L(ci (x0i ) + ε0i ; ci )
∞, i ∈ G,

then L(J (x0; ε0); J0) is unbounded. Conversely, if one of the sets

X∞, L(J (x0; ε0); f )∞, and (
∏

i∈G
L(J (x0; ε0) − f ; ri ◦ ci )

∞)

is empty, then L(J (x0; ε0); J0) is bounded.

Based on Corollary 1, we provide specific cases in the following proposition that can
guarantee the boundedness of L(J (x0; ε0); J0).

Proposition 3 Suppose x0 ∈ X and relaxation vector ε0 ∈ R
m++. Then the level set

L(J (x0, ε0), J0) is bounded, if one of the following conditions holds true

(i) X is compact.
(ii) f is coercive.

(iii) ri ◦ ci , i ∈ G are all coercive.
(iv) Assume

γi := sup
‖xi‖→∞

ri (ci (xi )) < +∞, i ∈ G.

Suppose (x0, ε0) is selected to satisfy
∑

i∈G
ri (ci (x0i ) + ε0i ) ≤ f +min

i
γi .
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Proof Part (i)–(i i i) are trivial true by Corollary 1. We only prove part (iv).
Assume by contradiction that L(J (x0; ε0); J0) is unbounded, then there exists x̄ ∈

L(J (x0; ε0); J0)∞ with x̄ �= 0. By the definition of horizon cone, there exists {tk} ⊂ R

and {xk} ⊂ X such that

tk ↓ 0, J0(xk) ≤ J (x0; ε0), and tkxk → x̄.

Therefore, there must be an ī ∈ G, such that ‖xk
ī
‖2 → ∞, implying ri ◦ ci (xk

ī
) → γī . This

means,

J (x0; ε0) ≥ lim
k→∞ J0(xk) ≥ f + lim

k→∞ ri ◦ ci (xk
ī
)

= f + γī ≥ f +min
i∈G γi ,

a contradiction. Therefore, L(J (x0, ε0), J0) is bounded. ��
Proposition 3(iv) indicates that the initial iterate x0 and ε0 may need to be chosen suffi-

ciently close to 0 to enforce convergence if φi is not coercive such as (FRA).

5 Numerical experiments

In this section, we test our proposed AIR algorithm for nonconvex and nonsmooth sparse
optimization problems in two numerical experiments and exhibit its performance. In both
experiments, the test problems have f (x) ≡ 0. The algorithm is implemented in Matlab with
the subproblems solved by the CVX solver [14]. We consider two ways of choosing ri and
ci , ci (xi ) = ‖xi‖1 and ci = ‖xi‖22, as described in Table 1, so that they can be referred as
�1-algorithm and �2-algorithm, respectively. In the subproblem, we use identical value for
each component of the relaxation parameter εk , i.e., εk = εke. In following two experiments,
we define sparsity as the nonzeros of the vectors.

5.1 Sparse signal recovery

In this subsection, we consider a sparse signal recovery problem [8], which aims to recover
sparse vectors from linear measurements. This problem can be formulated as

min
x∈Rn

‖x‖p
p

s.t. Ax = b,
(15)

where A ∈ R
m×n is the measurement matrix, b ∈ R

m×1 is the measurement vector and
p ∈ (0, 1).

In the numerical experiments, we fix n = 256 and the measurement numbers m = 100.
Draw the measurement matrix A ∈ R

m×n with entries normally distributed. Denote s as the
number of nonzero entries of x0, and set s = 40. We repeat the following procedure 100
times:

(i) Construct x0 ∈ R
n×1 with randomly zeroing n − s components. Each nonzero entries is

chosen randomly from a zero-mean unit-variance Gaussian distribution.
(ii) Form b0 = Ax0.
(iii) Solve the problem for x̂0.
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Fig. 1 Objective value versus iteration

We compare our AIR algorithms with the iterative reweighted unconstrained �q for sparse
vector recovery (IRucLq-v) algorithm [44]. The IRucLq-v algorithm penalizes the linear
constraint with a fixed parameter λ, yielding an unconstrained problem. Then, it uses a
reweighted least square method to approximately solve the unconstrained problem, of which
the subproblem can be addressed by solving a linear system. We set λ = 10−6, initialize
ε0 = 1 and x0 = 0. Update εk+1 = min{εk, α · r(xk+1)s+1}, where r(xk+1)s+1 denotes the
s + 1 largest (in absolute value) component of xk+1. Set s = �m/2 and α = 0.9.

For our AIR algorithms, at each iteration, the subproblem of AIR �1-algorithm can be
equivalently formulated as a Linear Programming (LP) problem; the subproblem of AIR
�2-algorithm is a Quadratic Programming (QP) problem. We initialize ε0 = 1 and x0 = 0.
Update εk+1 = 0.7εk for AIR �1-algorithm, and εk+1 = 0.9εk for AIR �2-algorithm. We

terminate our AIR �1-algorithm whenever ‖xk+1−xk‖2
‖xk‖2 ≤ 10−8 and εk+1 ≤ 10−3 are satisfied

and record the final objective value as f (x�1). The AIR �2-algorithm and the IRucLq-v

algorithm are terminated when
| f (xk )− f (x�1 )|

f (x�1 )
≤ 10−3 or k ≥ 500.

We first use one typical realization of the simulation to examine the convergence of all
algorithms. We solve the linear system Ax = b to get the same feasible initial point for
all algorithms. The experimental result is shown in Fig. 1. From the result, we observe that
the AIR �1-algorithm converges faster than the other algorithms, and AIR �2-algorithm and
IRucLq-v algorithm own similar convergence rates.

Then, we further investigate the properties of the solutions generated by all these algo-
rithms. We select the threshold in different levels as

ν ∈ {10−3, 10−6, 10−9, 10−12},
and set xi = 0 if |xi | <= ν, i = 1, · · · , n for each ν. The box plots in Fig. 2 demonstrate the
statistical properties of the number of nonzeros of all algorithms versus different thresholds.

The corresponding computation time and constraint violation results are shown in Table
2.
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Fig. 2 Empirical success probability versus sparsity

Table 2 Average runtime and constraint violation results with associated standard deviation

Method

AIR �1 AIR �2 IRucLq-v

Time (s) 0.289 ± 0.035 1.672 ± 0.187 0.013 ± 0.022

‖Ax̂ − b‖2 (9.18 ± 7.31) × 1e-13 (5.09 ± 0.79) × 1e-14 (1.76 ± 0.67) × 1e-5

We have the following observations from Fig. 2 and Table 2.

(i) From Fig. 2, we see that the AIR �1-algorithm outputs the most sparse solution. Further-
more, it has the most robust solution with respect to different thresholds. The IRucLq-v
algorithm outperforms the AIR �2-algorithm both in sparsity and robustness.

(ii) From Table 2, it shows that the IRucLq-v algorithm is more efficient than the AIR
algorithms, since it only needs to solve a linear system for each subproblem rather than
a LP or QP problem. However, the cost of efficiency is sacrificing the feasibility, which
is observed by the constraint violation results.

5.2 Group Sparse Optimization

In the second experiment, we consider the cloud radio access network power consumption
problem [38]. In order to solve this problem, a three-stage group sparse beamformingmethod
(GSBF) is proposed in [38]. The GSBF method solves a group sparse problem in the first
stage to induce the group sparsity for the beamformers to guide the remote radio head (RRH)
selection. This group sparse problem is addressed by minimizing the mixed �1/�2-norm.
For further promoting the group sparsity, we replace the �1/�2-norm by the �p/�2 quasi-
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norm (LPN) with p ∈ (0, 1) [36], yielding the following problem

min
v

L∑

l=1

√
ρl

ηl
‖ṽl‖p

2

s.t.
√∑

i �=k

‖h H
k vi‖22 + σ 2

k ≤ 1

γk
!(h H

k vk)

‖ṽl‖2 ≤ √
Pl , l = 1, · · · , L, k = 1, . . . , K .

(16)

We consider the Cloud-RAN architecture with L remote radio heads (RRHs) and K single-
antennaMobile Users (MUs), where the l-th RRH is equipped with Nl antennas. vlk ∈ C

Nl is
the transmit beamforming vector from the l-th RRH to the k-th user with the group structure
of transmit vectors ṽl = [vT

l1, · · · , vT
l K ]T ∈ C

K Nl×1. Denote the relative fronthaul link
power consumption by ρl , and the inefficient of drain efficiency of the radio frequency power
amplifier by ηl . The channel propagation between user k and RRH l is denoted as hlk ∈ C

Nl .
Pl is themaximum transmit power of the l-th RRH. σk is the noise atMU k. γ = (γ1, ..., γK )T

is the target signal-to-interference-plus-noise ratio (SINR).

5.2.1 Comparison with the mixed �1/�2 algorithm

In this experiment,we compare ourAIR �1- and �2-algorithmswith themixed �1/�2 algorithm
[38]. We consider a network with L = 10 2-antenna RRHs (i.e., Nl = 2), and K = 6 single-
antennaMUs uniformly and independently distributed in the square region [−1000, 1000]×
[−1000, 1000] meters. We set Pl = 1, ρl = 13, ηl = 1

4 for l ∈ {1, · · · , L}, σk = 1 for
k ∈ {1, . . . , K }. For each quality of service (QoS) q in {0, 2, 4, 6}, we set the target SINR
γk = 10q/10 for k = 1, . . . , K . Repeat the following procedure 50 times:

(i) Randomly generated network realizations for the channel propagation hlk , l ∈
{1, · · · , L}, k ∈ {1, · · · , K }.

(ii) Adopt AIR �1- and �2-algorithm to solve (16) for ṽ∗.
(iii) Regard the l-th component of ṽ∗ as zero, if ‖ṽ∗l ‖ ≤ 10−3 for l ∈ {1, · · · , L}.

We set the maximum number of iterations as T = 500, ε0i = 1 for AIR and update by
εk+1 = 0.7εk at each iteration with minimum threshold 10−6. Set p = 0.1. The algorithm
is terminated whenever | f (vk+1) − f (vk)| ≤ 10−4 is satisfied or k ≥ T .

In Fig. 3, we depict the sparsity of the final solution returned by mixed �1/�2 algorithm,
AIR �1- and �2-algorithms for problems with different SINR. The proposed AIR �1- and
�2-algorithms outperform the mixed �1/�2 algorithm in promoting the group sparsity. And
it is witnessed again that the AIR �1-algorithm outperforms AIR �2-algorithm in the ability
of accurately recovering sparse solutions.

5.2.2 Comparison with the difference of convex algorithm

We consider the same group sparse optimization problem (16) in this section, and compare
our AIR �1- and �2-algorithms with the SDCAM [45]. We defer the details of the SDCAM
for solving problem (16) to the appendix.

In this experiment, we consider a larger-sized network with L = 20 2-antenna RRHs
(i.e., Nl = 2), and K = 15 single-antenna MUs uniformly and independently distributed
in the square region [−2000, 2000] × [−2000, 2000] meters. We set Pl = 1, ρl = 20,
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Fig. 3 Average sparsity versus target SINR

ηl = 1
4 for l ∈ {1, · · · , L}, σk = 1 for k ∈ {1, . . . , K }. For each quality of service (QoS) q

in {0, 2, 4, 6}, we set the target SINR γk = 10q/10 for k = 1, . . . , K . Randomly generated
network realizations for the channel propagation hlk , l ∈ {1, · · · , L}, k ∈ {1, · · · , K }.

For the AIR algorithms, we set the maximum number of iterations as T = 500, ε0i = 100
for AIR and update by εk+1 = 0.5εk at each iteration with minimum threshold 10−6. Set
p = 0.1 (and p = 0.5). For the case p = 0.1, the AIR algorithms are terminated whenever

both ‖vk+1−vk‖2
‖vk‖2 ≤ 10−5 and εk+1 ≤ 10−3 are satisfied or k ≥ T . For the case p = 0.5, the

AIR �1-algorithm is terminated whenever ‖vk+1−vk‖2
‖vk‖2 ≤ 10−5 and εk+1 ≤ 10−3 are satisfied

or k ≥ T . We denote the solution as v�1 and record the final objective value as f (v�1). We
terminate the AIR �2-algorithm whenever f (vk+1) ≤ f (v�1) or k ≥ T .

The SDCAM applies the Moreau envelope to approximate problem (16), which yields
a sequence of DC subproblems. They solves the DC subproblems by the Nonmono-
tone Proximal Gradient method with majorization (NPGmajor). In SDCAM, we set λk =
max{1/10k+1, 10−10} and vfeas to be the vector of all ones. In NPGmajor, we set M = 4,
Lmax = 108, Lmin = 10−8, τ = 2, c = 10−5, Lk,0 = 1 and for t ≥ 1,

Lk,t = max

{

min

{
st T yt

‖st‖22
, Lmax

}

, Lmin

}

,

l where st = vt − vt−1, yt = ∇h(vt ) − ∇h(vt−1). We terminate NPGmajor when

‖st‖2
max(‖vt‖2, 1) < εk or

‖Fλk (v
t ) − Fλk (v

t−1)‖2
max(|Fλk (vt )|, 1) < 10−6,

where ε0 = 10−3 and εk = max{εk−1/1.5, 10−5}. We terminate the SDCAM whenever
f (vk+1) ≤ f (v�1) or k ≥ 1000.
First, we explore the convergence rates of SDCAM and our AIR algorithms with p = 0.5.

We demonstrate the results of objective values versus CPU time for all algorithms in Fig. 4,
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Fig. 4 Objective value versus CPU time

where we only report one typical channel realization. The results show that AIR algorithms
converge faster than SDCAM, especially the AIR �1-algorithm.

Then, we further investigate the properties of the solutions generated by all these algo-
rithms. For each quality of service (QoS) q in {0, 2, 4, 6}, we randomly generate the network
realizations 10 times. We select the threshold in different levels as

ν ∈ {10−3, 10−4, 10−5, 10−6, 10−7, 10−8},
and set ‖ṽl‖2 = 0 if ‖ṽl‖2 <= ν, l = 1, · · · , L . The box plots in Fig. 5 demonstrate the
distributions of the number of nonzeros of all algorithms versus different Target SINR. The
corresponding computation time results are shown in Table 3.

We have the following observations from Fig. 5 and Table 3.

(i) From Fi. 5a, we see that the AIR algorithms with p = 0.1, especially the AIR �1-
algorithm, has more sparse solution than the SDCAM. Furthermore, it shows that the
solutions generated by our AIR algorithms are more robust with respect to different
sparse levels.

(ii) From Fig. 5b, we see that the AIR �1-algorithm with p = 0.5 and the SDCAM perform
similarly in this case. The AIR �1-algorithm with p = 0.5 has the best performance both
in terms of the sparsity of the solution as well as the robustness of the solution in different
levels.

(iii) From Table 3, it shows that AIR �1-algorithm converges faster than the AIR �2-algorithm
and the SDCAM. Moreover, the SDCAM fails to achieve the target objective twice for
the cases q = 0, q = 2 and q = 4.

6 Conclusions

In this paper, we consider solving a general formulation for nonconvex and nonsmooth sparse
optimization problem, which can take into account different sparsity-inducing terms. An
iteratively reweighted algorithmic framework is proposed by solving a sequence of weighted
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Fig. 5 Comparing SDCAM with AIR algorithms by choosing (5a) p = 0.1 and (5b) p = 0.5

Table 3 Average runtime with associated standard deviation for SDCAM and AIR algorithms (with p = 0.5).
The number in parentheses is the number of the cases that the corresponding algorithms fail to achieve the target
objective. Note that for the case SDCAM fails to achieve the target objective, we do not take the corresponding
time into the statistical results

Qos Method

AIR �1 AIR �2 SDCAM

0 106.651±64.525 (0) 227.949±82.590 (0) 219.306±78.987 (2)

2 73.070±51.722 (0) 124.946±41.412 (0) 168.794±70.370 (2)

4 74.113±40.362 (0) 206.876±116.152 (0) 214.730±81.465 (2)

6 52.764±11.141 (0) 149.554±70.900 (0) 150.455±109.333 (0)

convex regularization subproblems. We have also derived the optimality condition for the
nonconvex and nonsmooth sparse optimization problem and provided the global convergence
analysis for the proposed iteratively reweighted methods.

Two variants of our proposed algorithm, the �1-algorithm and the �2-algorithm, are imple-
mented and tested. Numerical results exhibits their ability of recovering sparse signals. It is
also witnessed that the iteratively �1-algorithm is generally faster than the �2-algorithm
because much fewer iterations are needed for �1-algorithm. Overall, our investigation leads
to a variety of interesting research directions:

• A thorough comparison, through either theoretical analysis or numerical experiments, of
the existing nonconvex and nonsmooth sparse optimization problems using AIR would
be interesting to see. This should be helpful in providing the guidance for the users to
select sparsity-inducing functions.

• Our implementation reduces the relaxation parameter ε by a fraction each time. It would
be useful if a dynamic updating strategy can be derived to reduce the efforts of parameter
tuning as well as the sensitivity of the algorithm to ε.

• It would be meaningful to have a (local) complexity analysis for the reweigh-ted algo-
rithms.
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A implementation details of SDCAM

In this section, we provide the details of solving problem (16) by using SDCAM.By denoting

Ω :=
⎧
⎨

⎩
v :

√∑

i �=k

‖hH
k vi‖22 + σ 2

k ≤ 1

γk
!(hH

k vk), ‖ṽl‖2 ≤ √
Pl , l = 1, · · · , L, k = 1, · · · , K

⎫
⎬

⎭
,

and

P1(v) :=
L∑

l=1

√
ρl

ηl
‖ṽl‖p

2 and P0(v) := δ(v|Ω),

we can reformulate problem (16) as

min
v

F(v) := P0(v) + P1(v).

Then this problem can be solved by the SDCAM [45]. They approximate F by its Moreau
envelope at each iteration. More specifically, at iteration k, they solve the following approx-
imate problem

min
v

Fλk (v) := P0(v) + eλk P1(v),

where eλk P1(v) is the Moreau envelope of P1(v) with parameter λk , which takes the form

eλk P1(v) =:= inf
x
{ 1

2λk
‖v − y‖22 + P1(y)}.

The SDCAM drives the parameter λk to 0 and solves each corresponding subproblem Fλk

iteratively. By taking advantage of the equivalently formulation of eλk P1(v), i.e.,

eλk P1(v) = 1

2λ
‖v‖22 − sup

y∈dom P1
{ 1
λ
vT y− 1

2λ
‖y‖22 − P1(y)}

︸ ︷︷ ︸
Dλ,P1 (v)

,

we can reformulate Fλk as a DC problem, which can be solved by the NPGmajor method.
The NPGmajor method solves the DC subproblem by combing the proximal gradient method
with the nonmonotone line search technique, and terminates when the first-order optimality
condition is satisfied.Note that, for theNPGmajor method,we need to calculate the subgradient
of Dλ,P1(v), which is proved equal to 1

μ
proxλk ,P1(v). The proximity operator of �p norm

with p = 1/2 (or p = 2/3) has an analytic solution, which is provided in [46].
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