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Abstract. The feasibility problem is at the core of the modeling of many
problems in various disciplines of mathematics and physical sciences, and the

quasi-convex function is widely applied in many fields such as economics, fi-
nance, and management science. In this paper, we consider the stochastic
quasi-convex feasibility problem (SQFP), which is to find a common point of
infinitely many sublevel sets of quasi-convex functions. Inspired by the idea of

a stochastic index scheme, we propose a stochastic quasi-subgradient method
to solve the SQFP, in which the quasi-subgradients of a random (and finite)
index set of component quasi-convex functions at the current iterate are used
to construct the descent direction at each iteration. Moreover, we introduce

a notion of Hölder-type error bound property relative to the random control
sequence for the SQFP, and use it to establish the global convergence theorem
and convergence rate theory of the stochastic quasi-subgradient method. It
is revealed in this paper that the stochastic quasi-subgradient method enjoys

both advantages of low computational cost requirement and fast convergence
feature.
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1. Introduction. Let I be an (finite or infinite) index set, and let {fi : i ∈ I} be
a family of continuous real-valued functions on Rn. The feasibility problem aims to
find a point x ∈ Rn such that

fi(x) ≤ 0 for each i ∈ I. (1)

This type of feasibility problems is at the core of the modeling of many problems
in various disciplines of mathematics and physical sciences, such as image recovery
[13], wireless sensor networks localization [19], radiation therapy treatment planning
[11] and gene regulatory network inference [35].

When I is finite, problem (1) is the classical deterministic feasibility problem. In
extensive practical problems, functions involved in (1) are assumed to be convex,
and the corresponding problem is called the convex feasibility problem (CFP). Moti-
vated by its extensive applications, tremendous efforts have been devoted to the de-
velopment of optimization algorithms for solving the CFP. One of the most popular
approaches is the classical subgradient method. Many extensions on control schemes
(cyclic/parallel/most-violated control schemes) and various convergence features of
subgradient methods have been devised and well explored; see [3, 11, 13, 35, 37]
and references therein.

In a number of applications (e.g., the robust stabilization and control, and the
integral equations system), the index set I in problem (1) is always infinite, then the
corresponding problem (1) is called the stochastic feasibility problem [10, 15, 33].
The classical subgradient method is not implementable for the stochastic feasibili-
ty problem; particularly, the cyclic control never completes the first iteration and
finding the most violated control is an intractable task because of the infinite in-
equalities constraints. Inspired by the idea of stochastic index scheme [8, 29, 36] in
optimization, stochastic subgradient methods1 have been proposed and investigated
for solving stochastic convex feasibility problems (SCFP), in which each componen-
t function in (1) is convex; see [26, 29, 33] and references therein. In particular,
the global convergence and linear convergence rate of the stochastic subgradient
method to a solution of SCFP (1) (with probability 1) was established in [29] un-
der an assumption of the error bound property; the finite-termination convergence
theorem was established in [26, 33] under assumptions of the strong feasibility and
the distinguishability of feasible and infeasible points.

Most literature mentioned above considered the feasibility problem (1) with con-
vex components. However, the convex function is too restrictive in many real-life
problems encountered in economics, finance and management science. Compared
with the convex function, the quasi-convex function usually provides a much more
accurate representation of realities and still possesses certain desirable properties
of the convex function. For instance, the fractional function, characterized by a
ratio of technical terms (e.g., efficiency), is a typical class of quasi-convex (but non-
convex) functions, which has been widely applied in various areas; see [2, 34] and
references therein. This leads to a significant increase of studies in quasi-convex
optimization; see [2, 14, 18, 31, 34] and references therein.

When I is finite and functions involved in (1) are quasi-convex, the corresponding
problem is called the quasi-convex feasibility problem (QFP), which was first intro-
duced by Goffin et al. [16] at a differentiable case. Censor and Segal [12] and Hu

1Randomized projection methods [10, 15, 28] can be understood as a special case of stochastic

subgradient methods with certain stepsize.
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et al. [20, 23] proposed the quasi-subgradient methods with cyclic/parallel/most-
violated/stochastic control schemes to solve the nondifferentiable QFP, and estab-
lished their global convergence to a feasible solution of the QFP. However, to the
best of our knowledge, there is still no paper devoted to the study of optimization
algorithms for solving the stochastic quasi-convex feasibility problem (SQFP).

In the present paper, we consider the SQFP (1), where I is infinite and the in-
volved functions are quasi-convex, and aim to propose a stochastic quasi-subgradient
method to solve SQFP (1). In the stochastic quasi-subgradient method, the quasi-
subgradients of a random (and finite) index set of component functions at the cur-
rent iterate are used to construct the descent direction at each iteration. Contrast
to the deterministic subgradient methods, the stochastic quasi-subgradient method
consumes much less computational cost at each iteration, and thus is particularly
attractive in applications with numerous objectives or constraints.

The major contribution of this paper is to establish the convergence theory,
including the global convergence theorem and convergence rate analysis, of the
stochastic quasi-subgradient method for solving the SQFP (1). In particular, we
first introduce a notion of Hölder-type error bound property relative to a random
control sequence for the SQFP, which extends and loosens the Lipschitz-type er-
ror bound property introduced in [29, Assumption 2] (see Remark 3). Moreover,
we use it to establish the global convergence of the stochastic quasi-subgradient
method to a feasible solution of the SQFP (1) with probability 1 (see Theorem
3.10) and to quantitatively estimate the convergence rates (see Theorem 3.11). The
established convergence theory extends most of existing convergence results of sub-
gradient methods for the CFP [3, Theorems 7.18 and 7.36], the QFP [20] and the
SCFP [29, Proposition 3]; see Remark 3. As far as we know, the proposed stochastic
quasi-subgradient method and the established convergence theory are new in the
literature of SQFP.

The present paper is organized as follows. In Section 2, we present the notations
and some preliminary lemmas which will be used in this paper. In Section 3, we
propose a stochastic quasi-subgradient method to solve SQFP (1) and investigate
its global convergence theorem and convergence rate theory.

2. Notations and preliminary results. The notations used in the present paper
are standard in the n-dimensional Euclidean space Rn with inner product ⟨·, ·⟩ and
Euclidean norm ∥ · ∥. As usual, for x ∈ Rn and r > 0, we use B(x, r) to denote the
closed ball centered at x with radius r, and use S to denote the unit sphere centered
at the origin. The nonnegative orthant and the (positive) unit simplex in Rn are
denoted by Rn

+ and ∆n
+, respectively; that is,

∆n
+ := {λ ∈ Rn

++ :
n∑

i=1

λi = 1}.

Moreover, we use the notation that a+ := max{a, 0} for any a ∈ R, define the
positive part function of f : Rn → R by

f+(x) := max{f(x), 0} for any x ∈ Rn.

For x ∈ Rn and Z ⊆ Rn, we use dist(x, Z) and PZ(x) to denote the Euclidean
distance of x from Z and the Euclidean projection of x onto Z, respectively, that
is,

dist(x, Z) := inf
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.
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A function f : Rn → R is said to be quasi-convex if

f(αx+ (1− α)y) ≤ max{f(x), f(y)} for any x, y ∈ Rn and α ∈ [0, 1].

The sublevel sets of f at x are denoted by

lev<f (x) := {y ∈ Rn : f(y) < f(x)} and lev≤f (x) := {y ∈ Rn : f(y) ≤ f(x)}.

A convex function can be characterized by the convexity of its epigraphs, while a
quasi-convex function can be characterized by the convexity of its sublevel sets. In
particularly, f is quasi-convex if and only if lev<f (x) (and/or lev

≤
f (x)) is convex for

any x ∈ Rn.
The subdifferential of a quasi-convex function plays an important role in quasi-

convex optimization. Several specific types of subdifferentials have been introduced
and explored for quasi-convex functions that are defined via the “normal cone” to
the level sets; see [1, 17, 22] and references therein. In particular, Kiwiel [25], Censor
and Segal [12], and Hu et al. [22] utilized the following quasi-subgradient to de-
velop and analyze quasi-subgradient methods for solving quasi-convex optimization
problems.

Definition 2.1. The quasi-subdifferential of f : Rn → R at x ∈ Rn is defined by

∂∗f(x) := {g ∈ Rn : ⟨g, y − x⟩ ≤ 0 for any y ∈ lev<f (x)}.

Any vector g ∈ ∂∗f(x) is called a quasi-subgradient of f at x.

The nonemptiness of specific subdifferential is an essential property for a certain
type of functions, e.g., the convex subdifferential for the convex functions. It was
proved in [22, Lemma 2.1] that the quasi-subdifferential of a quasi-convex function
is nontrivial, that is, ∂∗f(x) \ {0} ̸= ∅ for each x ∈ Rn. Noting by Definition
2.1 that ∂∗f(x) is a normal cone to its sublevel set, it can be derived from [22,
Lemma 2.1] that the quasi-subdifferential of a quasi-convex function contains at
least a unit vector. This is a special property of the quasi-subdifferential beyond
the convex subdifferential (for a convex function). Moreover, it was claimed in
[22] that the quasi-subdifferential coincides with the convex cone hull of the convex
subdifferential whenever f is convex.

The Hölder condition of order β was used in [27] to provide a fundamental prop-
erty of the quasi-subgradient, and plays an important role in the establishment of
a basic inequality in convergence analysis of subgradient-type algorithms for quasi-
convex optimization problems; see, e.g., [21, 22, 27]. The Hölder condition with
order 1 is reduced to the Lipschitz condition, and this property holds for very broad
classes of functions in economics and management science with various values of
β ≤ 1.

Definition 2.2. Let 0 < β ≤ 1 and L > 0. The function f : Rn → R is said to
satisfy the Hölder condition of order β with modulus L on Rn if

|f(x)− f(y)| ≤ L∥x− y∥β for any x, y ∈ Rn.

The following lemma extends a fundamental property of quasi-convex optimiza-
tion in [27, Proposition 2.1] to the quasi-convex feasibility problem under the Hölder
condition.

Lemma 2.3 ([20, Lemma 2.1]). Let f : Rn → R be a quasi-convex and continuous
function, X be a closed and convex set, and let S := {x ∈ X : f(x) ≤ 0}. Let
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0 < β ≤ 1 and L > 0, and suppose that f satisfies the Hölder condition of order β
with modulus L on Rn. Then, for any x ∈ S and y ∈ X \ S, it holds that

f(y) ≤ L⟨g, y − x⟩β for each g ∈ ∂∗f(y) ∩ S.

We end this section by recalling the following two lemmas, which will be useful
in convergence analysis of the stochastic quasi-subgradient method.

Lemma 2.4 ([24, Lemma 4.1]). Let γ ≥ 1 and ai ≥ 0 for i = 1, · · · , n. Then it
holds that

1

nγ−1

(
n∑

i=1

ai

)γ

≤
n∑

i=1

aγi ≤

(
n∑

i=1

ai

)γ

.

Lemma 2.5 ([32, pp. 46, Lemma 6]). Let r > 0 and b > 0, and {uk} ⊆ R+ be a
sequence of nonnegative scalars such that

uk+1 ≤ uk − bu1+r
k for each k ∈ N.

Then it holds that

uk ≤ u0 (1 + rur
0bk)

− 1
r for each k ∈ N.

3. Stochastic quasi-convex feasibility problem. Let I be an infinite index
set, and let {fi : i ∈ I} be a family of quasi-convex and continuous (possibly
nondifferentiable) real-valued functions defined on Rn and C ⊆ Rn be a closed and
convex set. In the present paper, we consider the stochastic quasi-convex feasibility
problem (SQFP) that is to find a feasible point x ∈ R such that

x ∈ C and fi(x) ≤ 0 for each i ∈ I. (2)

Let (I,F ,Pr) be a complete probability space. By the formulation given in [10, 15],
an equivalent representation of the SQFP can be written as finding a feasible point
x ∈ R such that

Pr({ω ∈ I : x ∈ C, fω(x) ≤ 0}) = 1.

When I is a finite index set, problem (2) is reduced to the classical QFP [12, 16, 20].
As usual, we assume throughout the whole paper that the SQFP is consistent,

i.e., the solution set of the SQFP (2) is nonempty:

S = {x ∈ C : fi(x) ≤ 0, ∀i ∈ I} ̸= ∅.
Moreover, we always assume that each component function of the SQFP (2) satisfies
a Hölder condition as in the following assumption.

Assumption 3.1. For each i ∈ I, fi satisfies the Hölder condition of order βi ∈
(0, 1] with modulus Li ∈ (0,+∞) on C. Moreover, we assume

βinf := inf
i∈I

βi > 0 and Lsup := sup
i∈I

Li < ∞.

3.1. Stochastic quasi-subgradient method. One of the most popular and prac-
tical optimization algorithms for solving the feasibility problem is a class of subgra-
dient methods; see [3, 12, 20, 37] and references therein. However, for the SQFP
(2) where the index set I is infinite, the typical deterministic control schemes in the
classical subgradient method are not implementable. Particularly, the parallel con-
trol consumes expensive computational cost, the cyclic control never completes the
first iteration, and finding the most violated control is an intractable task because
of the infinite inequalities constraints.
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To conquer the obstacle of numerous objectives or infinite constraints in appli-
cation problems, the idea of the stochastic index scheme is increasingly popular
and extensively used for optimization problems with a large number of component
functions [4] or a large number of constraints [29]. A typical and very popular ex-
ample is the stochastic gradient descent (SGD) algorithm in machine learning [8],
in which only one component function is randomly selected to construct the descent
direction at each iteration. It was pointed out in [20] that the stochastic control
enjoys both advantages of low computational cost requirement and low (worst-case)
iteration complexity.

Inspired by the idea of stochastic index scheme, we will propose a stochastic quasi-
subgradient method for solving the SQFP (2). In the stochastic quasi-subgradient
method, the random control sequence is recalled from [26] as follows.

Definition 3.2. Let (Ω,F ,Pr) be a given probability space. The sequence {Ik}
is said to be a random control sequence in I if Ik : Ω → 2I \ {∅} are independent
and identically distributed (set-valued) random variables on (Ω,F ,Pr) with M :=
sup

ω∈Ω,k∈N
|Ik(ω)| < ∞.

Remark 1. As described in Definition 3.2, {Ik(ω)} is a nonadaptive control se-
quence in I for each ω ∈ Ω. The terminology “identically distributed” means that

Pr({ω ∈ Ω : Ik(ω) = J}) = Pr({ω ∈ Ω : In(ω) = J})

for any k, n ∈ N and any nonempty J ⊆ I with |J | ≤ M ; and the terminology
“independent” means that

Pr

( ∩
k∈K

{ω ∈ Ω : Ik(ω) = Jk}

)
=
∏
k∈K

Pr({ω ∈ Ω : Ik(ω) = Jk})

for any finite index set K and any nonempty Jk ⊆ I with |Jk| ≤ M .

Integrating the idea of stochastic index scheme [26, 29] into the quasi-subgradient
method [12, 20], we propose the following stochastic quasi-subgradient method to
solve the SQFP (2). In particular, the quasi-subgradients of a random index set of
component functions are selected to construct the descent direction at each iteration.
Recall that {(βi, Li)} are the parameters given in Assumption 3.1.

Algorithm 3.3. Select an initial point x1 ∈ Rn and a sequence of stepsizes {vk} ⊆
(0,+∞) satisfying

0 < v ≤ vk ≤ v < 2, (3)

and generate a random control sequence {Ik} in I. For each k ∈ N, having xk ∈ Rn,

we obtain a stochastic index set Ik(ω) ⊆ I, select weights {λk,i}i∈Ik(ω) ⊆ ∆
|Ik(ω)|
+ ,

calculate gk,i ∈ ∂∗fi(xk) ∩ S for each i ∈ Ik(ω), and update xk+1 by

xk+1 := PC

xk − vk
∑

i∈Ik(ω)

λk,i

(
f+
i (xk)

Li

) 1
βi

gk,i

 . (4)

Remark 2. Algorithm 3.3 provides a unified framework of stochastic subgradient
methods for feasibility problems, either deterministic or stochastic, either convex
or quasi-convex.

(i) When I is finite and {Ik} is single-valued, Algorithm 3.3 is reduced to the
stochastic subgradient methods for solving the CFP [33] and the QFP [23].
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(ii) When I is infinite, each fi is convex and {Ik} is single-valued, Algorithm 3.3
is reduced to the stochastic subgradient methods for solving the SCFP [29].

The remainder of this paper is contributed to the convergence analysis of the
stochastic quasi-subgradient method (i.e., Algorithm 3.3). To guarantee the con-
vergence property of Algorithm 3.3, we shall assume the following condition on the
weights {λk,i}; see [3, Remark 3.13]. A natural example is the naive weights, i.e.,
λk,i =

1
|Ik(ω)| for each i ∈ Ik(ω), which satisfies Assumption 3.4 automatically.

Assumption 3.4. There exists µ > 0 such that mini∈Ik(ω) λk,i ≥ µ for any ω ∈ Ω
and k ∈ N.

3.2. Basic inequality. The basic inequality shows a significant property and plays
a key tool in convergence analysis of subgradient methods. We start from the basic
inequality of Algorithm 3.3, which is able to derive some basic properties of the
stochastic quasi-subgradient method.

Lemma 3.5. Let x ∈ S, ω ∈ Ω, and let {xk} be a sequence generated by Algorithm
3.3. Suppose that Assumptions 3.1 and 3.4 hold. Then the following assertions are
true.

(i) It holds for each k ∈ N that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − v(2− v)µL
− 2

βinf
sup

∑
i∈Ik(ω)

(
f+
i (xk)

) 2
βi . (5)

(ii) {∥xk − x∥} is monotonically decreasing, and hence {xk} is bounded.

(iii) limk→∞
∑

i∈Ik(ω)

(
f+
i (xk)

) 2
βi = 0.

Proof. (i) Fix k ∈ N. We will claim that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − vk(2− vk)
∑

i∈Ik(ω)

λk,i

(
f+
i (xk)

Li

) 2
βi

. (6)

Granting this, (5) directly follows by (3) and Assumptions 3.1 and 3.4, and thus
assertion (i) is proved.

To show (6), without loss of generality, we assume that xk /∈ S; otherwise,
f+
i (xk) = 0 for each i ∈ I and then (4) generates xk+1 = xk, hence (6) is satisfied
automatically. By (4) and the nonexpansive property of the projection operator,
we obtain that

∥xk+1 − x∥2 ≤ ∥xk − vk
∑

i∈Ik(ω)

λk,i

(
f+
i (xk)

Li

) 1
βi

gk,i − x∥2

= ∥xk − x∥2 − 2vk
∑

i∈Ik(ω)

λk,i

(
f+
i (xk)

Li

) 1
βi

⟨xk − x, gk,i⟩ (7)

+ v2k∥
∑

i∈Ik(ω)

λk,i

(
f+
i (xk)

Li

) 1
βi

gk,i∥2.

Note by x ∈ S that fi(x) ≤ 0 for each i ∈ I. Then, for each i ∈ Ik(ω) such that

fi(xk) > 0, it follows from Lemma 2.3 that ⟨xk − x, gk,i⟩ ≥
(

f+
i (xk)

Li

) 1
βi
; otherwise,
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f+
i (xk) = 0. Hence we conclude that∑

i∈Ik(ω)

λk,i

(
f+
i (xk)

Li

) 1
βi

⟨xk − x, gk,i⟩ ≥
∑

i∈Ik(ω)

λk,i

(
f+
i (xk)

Li

) 2
βi

. (8)

On the other side, we obtain by the convexity of ∥ · ∥2 that

∥
∑

i∈Ik(ω)

λk,i

(
f+
i (xk)

Li

) 1
βi

gk,i∥2 ≤
∑

i∈Ik(ω)

λk,i

(
f+
i (xk)

Li

) 2
βi

,

(thanks to {λk,i}i∈Ik(ω) ⊆ ∆
|Ik(ω)|
+ and gk,i ∈ S). This, together with (7) and (8),

deduces (6), as desired.
(ii) It is a direct consequence of (5) showed in assertion (i).
(iii) It follows from (5) that

∞∑
k=1

∑
i∈Ik(ω)

(
f+
i (xk)

) 2
βi ≤ 1

v(2− v)µ
L

2
βinf
sup

(
∥x1 − x∥2 − lim

k→∞
∥xk − x∥2

)

≤ 1

v(2− v)µ
L

2
βinf
sup ∥x1 − x∥2 < ∞.

This shows that limk→∞
∑

i∈Ik(ω)

(
f+
i (xk)

) 2
βi = 0. The proof is complete.

The error bound property [30] plays an important role and has been extensively
used in convergence analysis of various numerical algorithms; see [6, 7, 22, 29, 35]
and references therein. Below, we introduce a notion of the Hölder-type error bound
property relative to a random control sequence for the SQFP (2). In particular, to
the random control sequence {Ik}, the sigma-field {Fk} records the history of the
method, that is,

Fk := {x1, I1(ω), . . . , Ik−1(ω)} for each k ∈ N. (9)

Definition 3.6. The SQFP (2) is said to satisfy the Hölder-type error bound prop-
erty of order p ≥ 1 relative to the random control sequence {Ik} if there exists η > 0
such that

distp(x, S) ≤ η E

 ∑
i∈Ik(ω)

f+
i (x)|Fk

 for any x ∈ C and k ∈ N. (10)

In particular, the SQFP (2) is said to satisfy the (Lipschitz-type) error bound
property relative to the random control sequence {Ik} if (10) holds with p = 1.

Remark 3. (i) In the case when Ik(ω) = {ωk} is single-valued and p = 1, the error
bound property (10) is reduced to [29, Assumption 2]:

dist(x, S) ≤ η E
{
f+
ωk
(x)|Fk

}
for any x ∈ C and k ∈ N, (11)

which was used in [29] to explore the stochastic subgradient method for the SCFP.
Clearly, the Hölder-type error bound property of order p ≥ 1 extends and loosens
the condition (11) (when x is close to S so that dist(x, S) < 1), because the larger
the order p, the less restrictive the condition.

(ii) It was shown in [29] that (11) is a quite general assumption in the scenario of
CFP. For example, when I is finite, (11) can be ensured by the linear regularity of
constraint sets [3], the weak sharp minima property [9], and the global error bound
of inequality system [30]; when I is arbitrary (finite or infinite), (11) is satisfied if
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provided the Slater condition of the solution set; see [29, pp. 231]. Recalling from
assertion (i), the Hölder-type error bound property (10) is weaker than (11), and
hence can be guaranteed by regular conditions mentioned above.

To establish the convergence theory of the stochastic quasi-subgradient method,
we shall assume the Hölder-type error bound property on the SQFP (2).

Assumption 3.7. The SQFP (2) satisfies the Hölder-type error bound property
of order p ≥ 1 relative to the random control sequence {Ik}.

By virtue of the basic inequality (5) and the Hölder-type error bound property,
we provide the basic inequality in terms of conditional expectation for Algorithm
3.3.

Lemma 3.8. Let x ∈ S, and let {xk} be a sequence generated by Algorithm 3.3 and
{Fk} be defined by (9). Suppose that Assumptions 3.1, 3.4 and 3.7 hold, and let

ρ := v(2 − v)µM (ηMLsup)
− 2

βinf . Then there exists N ∈ N such that the following
basic inequality holds

E{∥xk+1 − x∥2|Fk} ≤ ∥xk − x∥2 − ρdist
2p

βinf (xk, S) for each k ≥ N. (12)

Proof. By assumptions made in this lemma, Lemma 3.5 is applicable, and hence
(5) holds for each k ∈ N. Taking the conditional expectation of (5) with respect to
Fk, it follows that

E{∥xk+1−x∥2|Fk} ≤ ∥xk−x∥2−v(2−v)µL
− 2

βinf
sup E

 ∑
i∈Ik(ω)

(
f+
i (xk)

) 2
βi |Fk

 . (13)

Below, we estimate the conditional expectation term at the right hand side of (13).

Indeed, by Lemma 3.5(iii), there exists N ∈ N such that
∑

i∈Ik(ω)

(
f+
i (xk)

) 2
βi < 1

for each k ≥ N ; consequently, f+
i (xk) < 1 for each k ≥ N and i ∈ Ik(ω). Fix

k ≥ N , and note by Assumption 3.1 that βi ≥ βinf for each i ∈ I. Then we obtain
that ∑

i∈Ik(ω)

(f+
i (xk))

2
βi ≥

∑
i∈Ik(ω)

(f+
i (xk))

2
βinf . (14)

Noting by Assumption 3.1 that 2
βinf

> 1, we can apply Lemma 2.4 (with f+
i (xk),

2
βinf

in place of ai, γ) to achieve that

∑
i∈Ik(ω)

(f+
i (xk))

2
βinf ≥ |Ik(ω)|1−

2
βinf

 ∑
i∈Ik(ω)

f+
i (xk)

 2
βinf

≥ M
1− 2

βinf

 ∑
i∈Ik(ω)

f+
i (xk)

 2
βinf

(thanks to |Ik(ω)| ≤ M as in Definition 3.2). This, together with (14), implies that

∑
i∈Ik(ω)

(f+
i (xk))

2
βi ≥ M

1− 2
βinf

 ∑
i∈Ik(ω)

f+
i (xk)

 2
βinf

.
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Then by the elementary of probability theory and the convexity of t
2

βinf on R+ (as
2

βinf
> 1), we obtain that

E

 ∑
i∈Ik(ω)

(f+
i (xk))

2
βi |Fk

 ≥ M
1− 2

βinf E


 ∑

i∈Ik(ω)

f+
i (xk)

 2
βinf

|Fk


≥ M

1− 2
βinf

E

 ∑
i∈Ik(ω)

f+
i (xk)|Fk


 2

βinf

.

Note by Assumption 3.7 that (10) is satisfied; this, together with (13), yields that

E{∥xk+1 − x∥2|Fk} ≤ ∥xk − x∥2 − v(2− v)µM (ηMLsup)
− 2

βinf dist
2p

βinf (xk, S).

That is, (12) is shown to hold by the definition of ρ, and the proof is complete.

3.3. Global convergence theorem. This subsection aims to establish the global
convergence theorem of the stochastic quasi-subgradient method for the SQFP (2).
To this end, we recall the following supermartingale convergence theorem, which is
useful in the establishment of global convergence theorem.

Theorem 3.9 ([5, pp. 148]). Let {Yk}, {Zk} and {Wk} be three sequences of
random variables, and let {Fk} be a sequence of sets of random variables such that
Fk ⊆ Fk+1 for any k ∈ N. Suppose for any k ∈ N that

(a) Yk, Zk and Wk are functions of nonnegative random variables in Fk;
(a) E {Yk+1 | Fk} ≤ Yk − Zk +Wk;
(a)

∑∞
k=1 Wk < ∞.

Then
∑∞

k=1 Zk < ∞ and {Yk} converges to a nonnegative random variable with
probability 1.

By virtue of the basic inequality in Lemma 3.8 and the supermartingale con-
vergence theorem, we establish the global convergence theorem of the stochastic
quasi-subgradient method as follows.

Theorem 3.10. Let {xk} be a sequence generated by Algorithm 3.3. Suppose that
Assumptions 3.1, 3.4 and 3.7 hold. Then {xk} converges to a feasible solution of
SQFP (2) with probability 1.

Proof. By assumptions made in this theorem, Lemma 3.8 is applicable to ensuring

(12). Then, by applying Theorem 3.9 (to ∥xk − x∥, ρ dist
2p

βinf (xk, S), 0 in place of
Yk, Zk, Wk as k ≥ N), we obtain that

{∥xk − x∥} is convergent and

∞∑
k=0

dist
2p

βinf (xk, S) < ∞ with probability 1.

Consequently, limk→∞ dist(xk, S) = 0, and hence {xk} has a cluster point falling in
S, with probability 1. This, together with Lemma 3.5(ii), shows that {xk} converges
to this cluster point in S with probability 1. The proof is complete.

Remark 4. Theorem 3.10 shows the global convergence (with probability 1) of the
stochastic quasi-subgradient method to a feasible solution of SQFP (1) under the
assumptions of Hölder continuity and Hölder-type error bound property. It extends
[23, Theorem 4.2] to the infinite inequalities constraints situation and the general
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stochastic control. However, a slight defect in Theorem 3.10 is that an addition
assumption of Hölder-type error bound property is required to guarantee the global
convergence property. This is because the condition expectation on the second
term of the right-hand side of (5) can be estimated in finite inequalities constraints
situation, but cannot in the case of infinite constraints, without Assumption 3.7.

3.4. Convergence rate analysis. The establishment of convergence rate is sig-
nificant in guaranteeing the numerical performance of relevant algorithms. This
part is devoted to the establishment of convergence rates for the stochastic quasi-
subgradient method.

Theorem 3.11. Let {xk} be a sequence generated by Algorithm 3.3. Suppose that
Assumptions 3.1, 3.4 and 3.7 hold. Then the following assertions are true.

(i) If p = βinf , then there exist c ≥ 0 and τ ∈ (0, 1) such that

E {dist(xk, S)} ≤ cτk for each k ∈ N. (15)

(i) If p > βinf , then there exists c ≥ 0 such that

E {dist(xk, S)} ≤ ck
− βinf

2(p−βinf ) for each k ∈ N. (16)

Proof. By the made assumptions, Lemma 3.8 is applicable. Let N ∈ N and ρ > 0
be given in Lemma 3.8, and fix k ≥ N and x := PS(xk). Then (12) is reduced to

E
{
dist2(xk+1, S) | Fk

}
≤ dist2(xk, S)− ρdist

2p
βinf (xk, S). (17)

Taking the expectation on (17), we derive by the elementary of probability theory

and the convexity of t
p

βinf on R+ (as p ≥ 1 ≥ βinf) that

E
{
dist2(xk+1, S)

}
≤ E

{
dist2(xk, S)

}
− ρ

(
E
{
dist2(xk, S)

}) p
βinf for each k ≥ N.

(18)
(i) Suppose that p = βinf . Then one has by (18) that

E
{
dist2(xk+1, S)

}
≤ (1− ρ)E

{
dist2(xk, S)

}
for each k ≥ N.

Let τ :=
√
1− ρ and c :=

√
max

k=1...,N

{
(1− ρ)−kE

{
dist2(xk, S)

}}
. Then it follows

that
E
{
dist2(xk, S)

}
≤ c2τ2k for each k ∈ N.

This, together with the fact that

(E {dist(xk, S)})2 ≤ E
{
dist2(xk, S)

}
, (19)

deduces (15), and thus assertion (i) is proved.
(ii) Suppose that p > βinf . Then, by applying Lemma 2.5 (with E

{
dist2(xk, S)

}
,

ρ, p
βinf

− 1 in place of uk, b, r) to (18), we obtain that there exists c ≥ 0 such that

E
{
dist2(xk, S)

}
≤ ck

− βinf
(p−βinf ) for each k ∈ N.

This, together with (19), implies (16). The proof is complete.

Remark 5. (i) Theorem 3.11 quantitatively estimates the convergence rates of
the stochastic quasi-subgradient method under some mild conditions. Particularly,
Theorem 3.11(i) shows a linear convergence rate for the stochastic quasi-subgradient
method if each quasi-convex function in (2) is Lipschitz continuous and the SQF-
P satisfies the Lipschitz-type error bound property, that is Assumptions 3.1 and
3.7 with p = βi ≡ 1. Theorem 3.11(ii) exhibits a sublinear convergence rate
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O(k
− βinf

2(p−βinf ) ) for the SQFP satisfying the general Hölder continuity and Hölder-
type error bound property.

(ii) By Remarks 2 and 3, Theorem 3.11 extends most of existing convergence
results of subgradient methods for feasibility problems. In particular, when I is
finite, Theorem 3.11 is applicable to establish the linear/sublinear convergence rates
of subgradient methods for the CFP [3, Theorems 7.18 and 7.36] and the QFP [20].
When I is infinite, Theorem 3.11 is able to show the linear convergence rate of the
stochastic subgradient method for the SCFP [29, Proposition 3].
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