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1 Introduction

Mathematical optimization provides a unified framework for a wide variety of application
problems in many disciplines, in which we usually consider a general constrained optimiza-
tion problem

min f(x)
s.t. x ∈ X,
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where f : Rn → R is a real-valued function, and X ⊆ Rn is a nonempty, closed and convex
constraint set. Convex optimization plays a fundamental role in mathematical optimization.
However, convexity can become a too restrictive assumption for many real-life problems
encountered in economics, finance and management science. For the latter problems, quasi-
convex optimization can provide a much more accurate representation of reality, while still
sharing some desirable properties enjoyed by convex optimization problems. Hence there
is a significant increase of interest in quasi-convex optimization; see [2,11,27,31,36,60] and
references therein. This also results in the development of numerical algorithms for solving
quasi-convex optimization problems; see [20,33,34,37,40,49,59,62] and references therein.

Popular first-order algorithms for solving (convex or quasi-convex) optimization prob-
lems are the so-called projected subgradient methods. The classical projected subgradient
method was originally introduced by Polyak [52] and Ermoliev [29] in the 1970s to solve the
nondifferentiable convex optimization problem (1) (i.e., with f in (1) assumed to be convex)
and has the following iterative formula:

xk+1 := PX(xk − vkgk), (2)

where PX(·) denotes the Euclidean projection onto X, gk is a (convex) subgradient of f at
xk, and vk is a positive stepsize. Over the past five decades, various features of projected
subgradient methods have been established for convex optimization problems [17,38,57]
and many applications/extensions have been devised for structured convex optimization
problems [17,32,42].

Projected subgradient methods have also been extended and developed to solve nondif-
ferentiable quasi-convex optimization problems (i.e., (1) with f being quasi-convex); see [33,
34,37,40,62] and references therein. In the literature of projected subgradient methods, the
convergence theory, including the global convergence results, iteration complexity and con-
vergence rates, have been well studied for the quasi-convex optimization problems by using
several typical stepsize rules. In particular, Kiwiel [37] proposed a projected subgradient
method with a diminishing stepsize rule and explored the global convergence of function
values; in addition, the convergence of iterates was established under an additional regular
condition. Konnov [40] introduced a dynamic stepsize rule for the projected subgradient
method, presented the global convergence in both function values and iterates under the as-
sumption of a Hölderian condition, and established the sublinear convergence rate under an
additional assumption of weak sharp minimum of Hölderian order. Hu et al. [34] considered
a generic inexact projected subgradient method with the constant or diminishing stepsize
rules, and studied the influence of the deterministic noise on convergence theory (under the
Hölderian condition). Moreover, Hu et al. [33] explored the iteration complexity and the
linear or sublinear convergence rates (under an additional assumption of weak sharp mini-
mum of Hölderian order) of the (inexact) projected subgradient method with the constant,
diminishing and dynamic stepsize rules.

Unfortunately, the classical projected subgradient method suffers from several disadvan-
tages arising from the Euclidean projection; see, e.g., [4,6]. In particular, the Euclidean
projection operator destroys the nice descent property and might often lead to a zigzagging
effect, resulting in slow convergence, despite theoretical convergence guarantee. Moreover,
the Euclidean projection operator could be computationally expensive, if the constraint set
X is not simple.
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Note that the subgradient iteration (2) has an equivalent representation as a proximal
operator applied to the linear function induced by the current subgradient. Namely,

xk+1 = argmin{⟨vkgk, z⟩+
1

2
∥z − xk∥2 : z ∈ X}.

To avoid the disadvantages arising from the Euclidean projection operator, one common
approach is to replace the Euclidean distance by a distance-like function. Namely,

xk+1 = argmin{⟨vkgk, z⟩+ d(z, xk) : z ∈ X}, (3)

where the distance-like function d(·, ·) ensures that the iterates always remain in the inte-
rior of X. Hence, the resulting algorithm (3) is called interior subgradient method. In this
situation, the constraints of the original problem (1) are automatically eliminated.

The history of the interior subgradient method originates in 1983 from the mirror descent
method proposed by Nemirovsky and Yudin [43], which was applied to solve efficiently convex
optimization problems over the unit simplex with millions of variables [16]. It was shown
in Beck and Teboulle [15] that the mirror descent method can be viewed as an interior
subgradient method with d(·, ·) in (3) being a Bregman distance [19]. The convergence
theory and the iteration complexity of interior subgradient methods have been well studied
for constrained convex optimization, conic optimization and variational inequality problems
in [6,5,4] and references therein.

It was revealed in the literature that the interior subgradient method enjoys several
advantages: (i) it requires only first-order information, (ii) for particular types of constraints
(such as the polyhedron and the nonnegative orthant) and suitable proximal distance d(·, ·),
it generates simple iterative schemes, and (iii) it exhibits a nearly dimension independent
computational complexity in terms of the problem’s dimension; see, e.g., [5,6,15,16].

It is worth mentioning that the use of non-Euclidean distance-like function d(·, ·) in
place of the Euclidean distance has also been extensively pursued in the literature of proxi-
mal point methods for convex optimization problems [7,8,23,24,26,41,46,50,55,56,61] and
quasi-convex optimization problems [20,28,44,45,48,49,47,59]. However, to the best of our
knowledge, there is still no study devoted to the interior subgradient method based on
non-Euclidean distances d(·, ·) for quasi-convex optimization problems.

Our aim is twofold. First, we extend interior subgradient methods that use generalized
distances d(·, ·) to the framework of constrained quasi-convex optimization problems. Second,
we investigate the convergence properties of the resulting method. Our convergence analysis
is developed for three prototypical types of stepsizes: constant, diminishing, and dynamic.
Moreover, our types of distances include Bregman distances, φ-divergences, and second order
homogeneous kernels.

In our analysis, we consider a general constrained nondifferentiable quasi-convex opti-
mization problem in Hilbert spaces:

min f(x)
s.t. x ∈ X := clC ∩ V, (4)

where f : H → R is a continuous and quasi-convex function, H is a Hilbert space, and
C ⊆ H is a non-empty, open and convex set with closure clC, and V ⊆ H is a closed and
convex set (V is considered as a linear manifold in [4,6] and the whole space in [3,5]). The
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optimal value of problem (4) is denoted by f∗, and the optimal solution set, assumed to be
nonempty, is denoted by X∗.

Inspired by the idea of the interior subgradient method [4–6], we propose an interior
quasi-subgradient method of iterative form (3) to solve problem (4). Our proposed scheme
uses a unit quasi-subgradient in place of gk, a suitable proximal distance in place of d(·, ·),
and V in place of X; see Algorithm 1 for details.

The projected subgradient methods for solving convex optimization problems in Hilbert
spaces have been studied. Alber et al. [1] established the convergence of function values and
the weak convergence of the iterates to an optimal solution for the diminishing stepsize rule.
Solodov and Zavriev [58] and Barty et al. [12] explored the weak convergence of the iterates
of the inexact subgradient methods with deterministic noise or stochastic noise respectively
under certain assumptions of noise. Furthermore, Barty et al. [12] also established the strong
convergence of projected subgradient methods under an additional assumption of strong
convexity. Kiwiel [37] studied the weak convergence of the projected subgradient method
with diminishing stepsize rule under a regular condition for a quasi-convex optimization
problem.

We will extend the convergence theory of quasi-subgradient methods to the non-Euclidean
projection and Hilbert space setting. For the convergence analysis of the interior quasi-
subgradient method, under the assumption of Hölder continuity, we establish global conver-
gence and derive the iteration complexity for convergence towards the optimal value for the
cases of constant, diminishing, and dynamic stepsizes, respectively (see Theorems 1(i),(ii)-
3(i),(ii)). Under suitable assumptions, we establish weak convergence of the iterates to an
optimal solution for the diminishing and dynamic stepsizes. In the finite-dimensional case,
we establish convergence to a solution (see Theorems 2(iii)(b)-3(iii)(b)). Furthermore, we
introduce the notion of weak sharp minimum of Hölderian order relative to an induced prox-
imal distance, and use it to study the linear (or sublinear) convergence rates of the interior
quasi-subgradient method; see Theorems 4-6 for details.

In particular, the present paper extends the weak convergence theory in [37] to the dy-
namic stepsize rule and the non-Euclidean projection; particularly, we establish the weak
convergence of the interior quasi-subgradient method with the diminishing and dynamic
stepsize rules under the assumptions of the Lipschitz condition and the norm compatibili-
ty/strictly convexity of Bregman kernel; see Theorems 2(iii)(a)-3(iii)(a). To the best of our
knowledge, our work seems to be the first discussing the subgradient method with non-
Euclidean distance in Hilbert spaces, even for convex optimization problems.

The paper is organized as follows. In section 2, we present the notations and preliminary
results, including the properties of quasi-subdifferentials, used in this paper. We show that a
newly introduced generalized Gâteaux subdifferential is a subset of a quasi-subdifferential. In
section 3, we propose the interior quasi-subgradient method for solving the constrained quasi-
convex problem (4). In section 4, we investigate convergence analysis of the interior quasi-
subgradient method when using three prototypical stepsizes. The convergence properties
we establish include: global convergence, iteration complexity, and convergence rates. A
conclusion is given in section 5.



Interior Quasi-subgradient Method for Quasi-convex Optimization 5

2 Notations and preliminary results

In the present paper, we consider a Hilbert space H with an inner product ⟨·, ·⟩ and its
associated norm ∥ · ∥, and use the norm topology, unless clearly specified. Particularly, for
{xk} ⊆ H and x ∈ H, we use xk → x and xk ⇀ x to denote that {xk} strongly and weakly
converges to x, respectively; namely, limk→∞ xk = x and w-limk→∞ xk = x, respectively.
For x ∈ H and r > 0, we use B(x, r) to denote the closed ball centered at x with radius r,
and use S to denote the unit sphere centered at the origin. For x ∈ H and Z ⊆ H, we write
dist(x,Z) and PZ(x) to denote the distance of x from Z and the projection of x onto Z,
respectively; namely,

dist(x,Z) := inf
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.

If Z is convex, the normal cone of Z at x ∈ Z is defined by

NZ(x) := {y ∈ H : ⟨y, z − x⟩ ≤ 0 for any z ∈ Z}. (5)

For h : H → R and x ∈ H, the level sets of h at x are denoted by

lev<h (x) := {y ∈ H : h(y) < h(x)} and lev≤h (x) := {x ∈ H : h(y) ≤ h(x)}.

A function h : H → R is said to be quasi-convex if

h((1− α)x+ αy) ≤ max{h(x), h(y)} for any x, y ∈ H and any α ∈ [0, 1]. (6)

While a convex function can be characterized by the convexity of its epigraph, a quasi-convex
function can be characterized by the convexity of its level sets. The following proposition is
taken from [14, Definition 10.18 and Proposition 10.24].

Proposition 1 h : H → R is quasi-convex if and only if lev<h (x) (and/or lev
≤
h (x)) is convex

for each x ∈ H.

The subdifferential of a quasi-convex function plays an important role in quasi-convex
optimization. Several specific types of subdifferentials have been introduced and explored
for quasi-convex functions that are defined via the “normal cone” to the level sets; see [9,
10,30,51] and references therein. In particular, Kiwiel [37], Censor and Segal [25], and Hu
et al. [33,34] utilized a quasi-subgradient for developing and analyzing quasi-subgradient
methods. In the following definition, we recall the notion of quasi-subdifferential from [51].

Definition 1 Let h : H → R be a quasi-convex function, and let x ∈ H. The quasi-
subdifferential of h at x is defined by

∂Qh(x) := Nlev<
h (x)(x) = {g : ⟨g, y − x⟩ ≤ 0 for any y ∈ lev<h (x)}. (7)

It is an essential property that the convex subdifferential of each convex function is
nonempty. The following proposition states that the quasi-subdifferential of a quasi-convex
and upper semicontinuous function is nontrivial, which extends the property in Euclidean
spaces [34, Lemma 2.1] to Hilbert spaces. The proof is similar to that of [34, Lemma 2.1]
(and uses the separation theorem in Hilbert spaces [64, Theorem 1.1.3]), and thus is omitted.
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Proposition 2 Let h : H → R be a quasi-convex and upper semicontinuous function. Then
∂Qh(x) \ {0} ̸= ∅ for each x ∈ H.

From Definition 1, the quasi-subgradient is not easy to calculate. In fact, we shall cal-
culate the level set of the function and then estimate one of its normal vectors. To avert
this difficulty, we provide an alternative approach for a quasi-subgradient via its Gâteaux
derivatives. We recall the relevant definition below.

Definition 2 Let h : H → R and x, u ∈ H. The directional derivative of h at x along u is
defined by

h′(x, u) := lim
t→0+

h(x+ tu)− h(x)

t
.

h is said to be Gâteaux differentiable at x if there exists a (necessarily unique) h′G(x) ∈ H
(called Gâteaux derivative) such that

h′(x, u) = ⟨h′G(x), u⟩ for each u ∈ H. (8)

By [54, Theorems 4.2 and 6.2], a quasi-convex and densely continuous function in Hilbert
spaces is (a.e.) Gâteaux differentiable. Hence we define the following generalized Gâteaux
subdifferential by using the weak limit of the Gâteaux derivatives of h nearby x.

Definition 3 Let f : h : H → R be a quasi-convex and densely continuous function and
x ∈ H. The generalized Gâteaux subdifferential of h at x is defined by

∂Gh(x) :=
{
g ∈ H : ∃ xi

h−→ x such that h′G(xi)⇀ g
}
, (9)

where xi
h−→ x means that xi → x with h(xi) → h(x).

The following proposition shows that the generalized Gâteaux subdifferential of h at x is
a subset of the quasi-subdifferential of h at x. Hence, we may obtain a quasi-subgradient by
computing the Gâteaux derivative of a quasi-convex function (at a Gâteaux differentiable
point), or by computing the weak limit of Gâteaux derivatives close to a nondifferentiable
point.

Proposition 3 Let h : H → R be quasi-convex and continuous. Then ∂Gh(·) ⊆ ∂Qh(·).

Proof Fix x ∈ H. We first show that

[h is Gâteaux differentiable at x] ⇒ [⟨h′G(x), z − x⟩ ≤ 0 for each z ∈ lev≤h (x)]. (10)

To this end, suppose that h is Gâteaux differentiable at x, and fix z ∈ lev≤h (x). It follows
from (8) (with z − x in place of u) that for each ϵ > 0, there exists δ(ϵ) ∈ (0, 1) such that

h(x+ t(z − x))− h(x)

t
− ⟨h′G(x), z − x⟩ ≥ −ϵ for each 0 < t < δ(ϵ). (11)

By the quasi-convexity of h, we can use (6) to write h(x+t(z−x)) ≤ max{h(x), h(z)} = h(x)

(thanks to z ∈ lev≤h (x)). Thus it follows from (11) that ⟨h′G(x), z − x⟩ ≤ ϵ. Since ϵ > 0 is
arbitrary, it follows that ⟨h′G(x), z − x⟩ ≤ 0; consequently, (10) is proved as desired.
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To complete the proof, fix g ∈ ∂Gh(x). By (9), there exists a sequence {xi}, where h is
Gâteaux differentiable, such that

xi
h−→ x and h′G(xi)⇀ g. (12)

Let z ∈ lev<h (x). Since h(xi) → h(x) (by xi
h−→ x), there exists k ∈ N such that z ∈ lev≤h (xi)

for each i ≥ k. Then one has by (10) (with xi in place of x) that

⟨h′G(xi), z − xi⟩ ≤ 0 for each i ≥ k.

Using now (12), the fact that xi converges strongly to x and the boundedness of h′G(xi), we
arrive, after taking limits for i → ∞, at ⟨g, z − x⟩ ≤ 0. Since z ∈ lev<h (x) is arbitrary, we
can use (7) to conclude that g ∈ ∂Qh(x). The proof is complete.

We end this section by recalling several lemmas, which will be useful in the convergence
analysis of the interior quasi-subgradient method.

Lemma 1 ([38, Lemma 2.1]) Let {ak} be a sequence of scalars, and let {vk} be a sequence

of nonnegative scalars. Suppose that limk→∞
∑k
i=1 vi = ∞. Then it holds that

lim inf
k→∞

ak ≤ lim inf
k→∞

∑k
i=1 viai∑k
i=1 vi

≤ lim sup
k→∞

∑k
i=1 viai∑k
i=1 vi

≤ lim sup
k→∞

ak.

In particular, if limk→∞ ak = a, then limk→∞

∑k
i=1 viai∑k
i=1 vi

= a.

Lemma 2 ([33, Lemma 2.2]) Let r > 0, a > 0, b ≥ 0, and let {uk} be a sequence of
nonnegative scalars such that

uk+1 ≤ uk − au1+rk + b for each k ∈ N.

(i) If b = 0, then

uk ≤ u0 (1 + raur0k)
− 1

r for each k ∈ N.

(ii) If 0 < b < a−
1
r (1 + r)

− 1+r
r , then there exists τ ∈ (0, 1) such that

uk ≤ τku0 +

(
b

a

) 1
1+r

for each k ∈ N.

Lemma 3 ([53, pp. 46, Lemma 5]) Let a > 0, b > 0, s ∈ (0, 1) and t > s, and let {uk}
be a sequence of nonnegative scalars such that

uk+1 ≤
(
1− ak−s

)
uk + bk−t for each k ∈ N.

Then it holds that

uk+1 ≤ b

a
ks−t + o(ks−t).
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Lemma 4 ([53, pp. 50, Lemma 11]) Let {uk}, {βk} and {ϵk} be three sequences of
nonnegative scalars such that

uk+1 ≤ uk − βk + ϵk for each k ∈ N.

Suppose that
∑∞
k=1 ϵk < +∞. Then {uk} is convergent and

∑∞
k=1 βk < +∞.

Lemma 5 ([1, Proposition 2]) Let a > 0, {uk} and {βk} be two sequences of nonnegative
scalars satisfying

∞∑
k=1

βk = +∞,

∞∑
k=1

βkuk < +∞ and uk+1 ≤ uk + aβk for each k ∈ N.

Then limk→∞ uk = 0.

3 Interior quasi-subgradient method

In this section, we propose an interior quasi-subgradient method to solve the quasi-convex
optimization problem (4). The principle of the interior quasi-subgradient method is to use a
non-Euclidean distance-like function (satisfying certain desirable properties) in place of the
Euclidean distance in the classical quasi-subgradient method [37]. More precisely, the pro-
jection is performed w.r.t. a suitably chosen distance. This will force the generated iterates
to stay in the interior of the constraint set, and thus, automatically eliminate the constraints
and also produce interior trajectories; see, e.g., [5,6].

To introduce the method, we define first a proximal distance that replaces the usual
Euclidean distance and allows to handle the problem constraints as desired. In the definition
below, item (i) is a distance-like property, item (ii) forces the generated iterates to stay in
the open set C, and item (iii) constitutes a useful property for the convergence analysis.
For a function d : X × Y → R, and a fixed y ∈ Y , we denote by ∇1d(·, y) and ∂1d(·, y) the
derivative and the subdifferential of d(·, y) w.r.t. the first variable, respectively.

Definition 4 Let C ⊆ H be open and convex, and V ⊆ H be closed and convex. The
mapping d : H×H → R+ ∪ {+∞} is said to be a proximal distance if, for each y ∈ C ∩ V ,
the following properties are satisfied:

(i) d(·, y) is proper, lower semicontinuous (lsc), convex and continuously differentiable on
C ∩ V with d(y, y) = 0 and ∇1d(y, y) = 0.

(ii) dom d(·, y) ⊆ clC and dom ∂1d(·, y) = C.
(iii) d(·, y) is σ-strongly convex over C ∩ V , i.e.,

⟨∇1d(x1, y)−∇1d(x2, y), x1 − x2⟩ ≥ σ∥x1 − x2∥2 for each x1, x2 ∈ C ∩ V.

We use D(C, V ) to denote the family of all functions d(·, ·) satisfying the premises above.

The types of proximal distances include Bregman distances, φ-divergences, and second
order homogeneous kernels; see [5–7,22] and references therein. Given d ∈ D(C, V ), we can
define a projection-like mapping P : H×H → H

P(g, x) := argmin{⟨g, z⟩+ d(z, x) : z ∈ V } for each g ∈ H, x ∈ C ∩ V. (13)
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Remark 1 For d ∈ D(C, V ), and thanks to Definition 4(i)-(iii), we have that P(·, ·) is well-
defined and is a single-valued map with images in C ∩ V (see also [6]). Since P(g, x) ∈ C
and C is open, P is called an interior projection mapping. Moreover, for a given proximal
distance d(·, ·), the interior projection mapping (13) performs a proximal-like step associated
with a linear function without the need of considering the constraint C. On the other hand,
the Euclidean projection operator executes a proximal step with a linear function, and the
constraint clC ∩ V still needs to be imposed separately. This iteration is likely to be more
complicated than (13).

The interior quasi-subgradient method for solving the quasi-convex optimization problem
(4) is formally stated as follows. Recall that S denotes the unit sphere centered at the origin.
In the special case when the proximal distance is chosen as the Euclidean distance d(x, y) =
1
2∥x−y∥

2, the interior quasi-subgradient method is reduced to the classical projected quasi-
subgradient method [37] for solving the quasi-convex optimization problem.

Algorithm 1 (Interior quasi-subgradient method) Select an initial point x1 ∈ H and
a sequence of stepsizes {vk} ⊆ (0,+∞). For each k ∈ N, given xk, select gk ∈ ∂Qf(xk) ∩ S
and update xk+1 by

xk+1 := P(vkgk, xk). (14)

The main computational task in Algorithm 1 is the interior projection mapping (13).
For some choices of d, C, and V , the projection can be computed via a closed formula, and
thus the resulting Algorithm 1 is particularly attractive; one can refer to [4–6,22] for the
detailed examples.

To measure the convergence properties of the interior quasi-subgradient method, we recall
from [5,6,22] the definition of an induced proximal distance H(·, ·) to d(·, ·).

Definition 5 Let C ⊆ H be open and convex, V ⊆ H be closed and convex, and d ∈
D(C, V ). The function H : H×H → R+ ∪{+∞} is said to be the induced proximal distance
to d(·, ·), if

(a) H(·, ·) is finite-valued on clC × C, and H(x, x) = 0 for each x ∈ C,
(b) H(z, x)−H(z, y) ≥ ⟨z − y,∇1d(y, x)⟩ for each x, y ∈ C and z ∈ clC.

In addition to (a) and (b), H verifies the following properties.

(i) For each y ∈ clC and each bounded sequence {yk} ⊆ C with limk→∞ H(y, yk) = 0,
then yk ⇀ y.

(ii) For each y ∈ clC and {yk} ⊆ C with yk → y, then limk→∞ H(y, yk) = 0.
(iii) For each y ∈ clC and {yk} ⊆ C with limk→∞ ∥yk∥ = ∞, then limk→∞ H(y, yk) = ∞.

We write (d,H) ∈ F+(C, V ) to express the fact that the quaternity [C, V, d,H] satisfies
(a)-(b) and (i)-(iii) above.

Given an induced proximal distance H to d, we define the H-distance from a point x ∈ H
to a set Z ⊆ H as follows

distH(Z, x) := inf
z∈Z

H(z, x).

The proximal distance is said to be self-proximal if d = H. The readers can refer to [4,5,7,22,
61] for examples of pair (d,H) in Euclidean spaces, such as Bregman distances, φ-divergences
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and second order homogeneous kernels. The following is an example of self-proximal distance,
that uses Bregman distances [19]. This example defines a distance in an infinite dimensional
Hilbert space following an idea in [21, Section 5.6]. The idea is to use a finite intersection
of open half-spaces as the constraint set C, and then use the sum of two distances, one of
them the square of the norm, to ensure strong convexity, and the other a distance d that
takes care of the constraint C. In the following example, any φ-divergence, second order
homogeneous kernel, or Bregman distance can be used as a first term in equation (18).

Example 1 We first recall the Bregman distance in Euclidean spaces; see, e.g., [26,22]. Let
φ : Rn → R ∪ {+∞} be a Legendre function satisfying the following conditions:

(A1) φ is proper, lsc, and convex with domφ ⊆ Rn+ and dom∇φ = Rn++.
(A2) φ is strictly convex and continuous on domφ, and continuously differentiable on Rn++.

Associated to this φ, the Bregman distance Dφ : Rn × Rn → R+ ∪ {+∞} is defined by

Dφ(x, y) :=
{
φ(x)− φ(y)− ⟨∇φ(y), x− y⟩, ∀x ∈ Rn+, y ∈ Rn++,
+∞, otherwise.

(15)

The Bregman distance Dφ enjoys a remarkable three point identity [26, Lemma 3.1] that

Dφ(z, x) = Dφ(z, y) +Dφ(y, x) + ⟨∇1Dφ(y, x), z − y⟩. (16)

By (16) and the convexity of φ, the Bregman distance is self-proximal, that is, d = H = Dφ,
or equivalently, (Dφ,Dφ) ∈ F+(Rn++,Rn).

Now we introduce the Bregman distance in infinite-dimensional Hilbert spaces. Let

C := {x ∈ H : ⟨Ai, x⟩ > bi, i = 1, . . . , n}, (17)

where Ai ∈ H and bi ∈ R for i = 1, . . . , n, and write A := [A1, . . . , An] and b := [b1, . . . , bn].
Inspired by the idea in [21, Section 5.6], we define a regularized Bregman kernel associated
to the set C as

ψ(x) := φ(Ax− b) +
σ

2
∥x∥2 for each x ∈ H, (18)

where σ > 0. By assumptions (A1) and (A2) of φ and by (18), one can check that (see [21,
Proposition 5.2]) ψ : H → R ∪ {+∞} satisfies the following conditions:

(B1) ψ is proper, weakly lsc, and convex with domψ ⊆ clC and dom∇ψ = C.
(B2) ψ is strictly convex and continuous on domψ, and continuously differentiable on C.

Using the regularized Bregman kernel ψ, we now define the Bregman distance Dψ : H×H →
R+ ∪ {+∞} via (15), with ψ in place of φ. By (18), (15) and (16), one can check that
Dψ ∈ D(C,H) and Dψ is self-proximal; consequently, (Dψ,Dψ) ∈ F+(C,H).

Separable Bregman distances are the most commonly used in the literature. In detail,
the Legendre function φ is written as the summation of one-dimensional functions

φ(x) :=
n∑
i=1

θ(xi),
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where θ : R → R+ ∪ {+∞} satisfies conditions (A1) and (A2) and is twice differentiable on
R++. By the separable structure and (15), one has Dφ(x, y) =

∑n
i=1 Dθ(xi, yi); moreover,

one can check by (18) that

ψ(x) =

n∑
i=1

θ(⟨Ai, x⟩ − bi) +
σ

2
∥x∥2

and

Dψ(x, y) =
n∑
i=1

Dθ(⟨Ai, x⟩ − bi, ⟨Ai, y⟩ − bi) +
σ

2
∥x− y∥2.

One can refer to [5,13] for several popular examples of separable Bregman kernels and their
associated Bregman distances; e.g., the Euclidean distance, the Kullback-Leibler divergence
and the Itakura-Saito divergence are Bregman distances with the separable kernel θ(·) given
by the energy, the Boltzmann-Shannon entropy and the Burg entropy, respectively.

In the rest of this paper, we focus on the convergence properties and convergence rates
of the interior quasi-subgradient method, i.e., Algorithm 1.

4 Convergence analysis

In this section we establish the convergence properties of the interior quasi-subgradient
method for three types of stepsize strategies.

To this end, we first present some useful properties of the interior projection mapping in
the following proposition, which extends [5, Proposition 4.1] to Hilbert spaces.

Proposition 4 Let x ∈ C ∩ V , g ∈ H and v > 0. Suppose that d ∈ D(C, V ). Then the
following assertions are true.

(i) P(0, x) = x.
(ii) σ∥x− P(vg, x)∥2 ≤ v⟨g, x− P(vg, x)⟩.
(iii) σ∥x− P(vg, x)∥ ≤ v∥g∥.

Proof From the strong convexity of d(·, y) we have that P(·, ·) is a single-valued mapping
(see Remark 1). Assertion (i) directly follows from (13) and Definition 4(i); assertion (iii)
immediately follows from assertion (ii) and the Cauchy-Schwarz inequality. Hence, it only
remains to show assertion (ii). Writing the optimality conditions for (13) with vg in place
of g become

0 ∈ vg +∇1d(P(vg, x), x) + NV (P(vg, x)). (19)

Recalling that V is a closed and convex set, we deduce by (5) that (19) is equivalent to

⟨vg +∇1d(P(vg, x), x), z − P(vg, x)⟩ ≥ 0 for each z ∈ V. (20)

Then, by the strong convexity of d(·, y) (i.e., Definition 4(iii) with P(vg, x), x, x in place of
x1, x2, y) and Definition 4(i), we obtain that

σ∥x− P(vg, x)∥2 ≤ ⟨∇1d(P(vg, x), x),P(vg, x)− x⟩ ≤ v⟨g, x− P(vg, x)⟩,

where we also used (20) for z := x. The above expression is (ii). The proof is complete.
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The Hölder condition of order p was used in [39] to describe some basic properties of
quasi-subgradient, and plays an important role in the convergence study of quasi-subgradient
methods for quasi-convex optimization problems; see [33–35,40].

Definition 6 Let 0 < p ≤ 1 and L > 0. The function f : H → R is said to satisfy the
Hölder condition (restricted to the set of minima X∗) of order p with modulus L on H if

f(x)− f∗ ≤ Ldistp(x,X∗) for each x ∈ H.

The Hölder condition of order p reduces to the Lipschitz condition (restricted to the set
of minima X∗) when p = 1, and this property holds for very broad classes of functions with
various values of p > 0. The following lemma extends [62, Lemma 2.5] to Hilbert spaces
and describes an important property of a quasi-convex function that satisfies the Hölder
condition of order p. The line of analysis is similar to that of [62, Lemma 2.5], and thus is
omitted.

Lemma 6 Let f : H → R be a quasi-convex and continuous function and x∗ ∈ X∗. Let
0 < p ≤ 1 and L > 0, and suppose that f satisfies the Hölder condition of order p with
modulus L on H. Then, for each x ∈ X \X∗, it holds that

f(x)− f∗ ≤ L ⟨g, x− x∗⟩p for each g ∈ ∂Qf(x) ∩ S.

This property is a key to establish a basic inequality in the convergence analysis of
quasi-subgradient methods; see, e.g., [34,35,62]. Hence, throughout this section, we make
the following assumption to investigate the convergence properties of the interior quasi-
subgradient method.

Assumption 1 f : H → R is quasi-convex and continuous, and satisfies the Hölder condi-
tion of order p ∈ (0, 1] with modulus L on H.

Under this assumption, the following lemma provides the basic inequality of the interior
quasi-subgradient method, which is the foundation of its convergence analysis.

Lemma 7 Let (d,H) ∈ F+(C, V ) and let {xk} be a sequence generated by Algorithm 1.
Then the following assertions are true.

(i) Let z ∈ clC, then we have

H(z, xk+1)−H(z, xk) ≤ vk⟨gk, z − xk+1⟩.

(ii) Suppose that Assumption 1 is satisfied and fix k ∈ N. If xk /∈ X∗, then it holds that

H(x∗, xk+1) ≤ H(x∗, xk)− vk

(
f(xk)− f∗

L

) 1
p

+
v2k
σ

for each x∗ ∈ X∗. (21)

Moreover, if xk /∈ X∗ for k = 1, . . . , n, then

H(x∗, xn+1) ≤ H(x∗, x1)− L− 1
p

n∑
k=1

vk(f(xk)− f∗)
1
p +

n∑
k=1

v2k
σ

for each x∗ ∈ X∗. (22)
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Proof (i) Fix z ∈ clC. From Definition 5(b) we obtain

H(z, xk+1)−H(z, xk) ≤ −⟨z − xk+1,∇1d(xk+1, xk)⟩
≤ vk⟨gk, z − xk+1⟩,

where (20) and (14) are used in the last inequality.
(ii) From part (i) for z = x∗ we deduce

H(x∗, xk+1)−H(x∗, xk) ≤ vk⟨gk, xk − xk+1⟩ − vk⟨gk, xk − x∗⟩. (23)

In view of Algorithm 1 and Assumption 1, we obtain by Lemma 6 and Proposition 4(iii) the
following inequalities

⟨gk, xk − x∗⟩ ≥
(
f(xk)− f∗

L

) 1
p

and ⟨gk, xk − xk+1⟩ ≤ ∥xk − xk+1∥ ≤ vk
σ
,

respectively. Combining these inequalities with (23), (21) follows. Suppose further that xk /∈
X∗ for k = 1, . . . , n. Then (21) holds for k = 1, . . . , n; adding these yields (22). The proof is
complete.

To end this subsection, we provide a framework for establishing the weak convergence
of the interior quasi-subgradient method under the following additional assumption on the
proximal distance. Assumption 2 reduces to the so-called norm compatibility introduced in
[23, pp. 200 (B6)] for the case in which d(·, ·) is a Bregman distance, and in [21, Definition
5.3] for infinite-dimensional case. The Boltzmann-Shannon entropy is an example satisfying
the norm compatibility; see [21, Proposition 5.3]. In particular, consider the constraint set
C defined in Example 1 (see (17)), and the separable Boltzmann-Shannon kennel given by
θ(t) := t log(t). Define η : H → Rn with ηi(z) := ⟨Ai, z⟩ − bi for any z ∈ H and i = 1, . . . , n;
so the vector η(z) ∈ Rn++ for all z ∈ C. Hence the regularized Boltzmann-Shannon kennel is

ψ(x) :=
n∑
i=1

ηi(x) log(ηi(x)) +
σ

2
∥x∥2,

and the regularized Boltzmann-Shannon entropy is

Dψ(x, y) := dKL(η(x), η(y)) +
σ

2
∥x− y∥2,

where dKL(·, ·) is the Kullback-Liebler divergence defined by

dKL(µ, ν) :=
n∑
i=1

µi log
µi
νi

− µi + νi for each µ ∈ Rn+, ν ∈ Rn++.

Lemma 8 will be useful in Theorems 2 and 3 for establishing the weak convergence of the
interior quasi-subgradient method with the diminishing or dynamic stepsize rules.

Assumption 2 Let {xk} ⊆ H, and let x̄1 and x̄2 be the arbitrary weak cluster points of
{xk}. If limk→∞⟨∇1d(xk+1, xk), x̄1 − x̄2⟩ = 0, then we must have x̄1 = x̄2.

Lemma 8 Let (d,H) ∈ F+(C, V ) and let {xk} be a sequence generated by Algorithm 1.
Suppose that the following assumptions are satisfied:
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(a) limk→∞ vk = 0, {xk} is bounded, {H(x∗, xk)} is convergent for each x∗ ∈ X∗.
(b) Each weak cluster point is an optimal solution of (4).
(c) Assumption 2 is satisfied.

Then {xk} weakly converges to an optimal solution of (4).

Proof Let x̄1 and x̄2 be two weak cluster points of {xk}. Then one has by assumption (b)
that x̄1, x̄2 ∈ X∗. By Definition 5(b) (with xk, xk+1, x̄1 in place of x, y, z), one has

⟨∇1d(xk+1, xk), x̄1 − xk+1⟩ ≤ H(x̄1, xk)−H(x̄1, xk+1).

Moreover, (20) (with xk, xk+1, x̄2, gk in place of x, P(vg, x), z, g) is reduced to

⟨∇1d(xk+1, xk), xk+1 − x̄2⟩ ≤ ⟨vkgk, x̄2 − xk+1⟩.

Combining the above two inequalities, we obtain that

⟨∇1d(xk+1, xk), x̄1 − x̄2⟩ ≤ H(x̄1, xk)−H(x̄1, xk+1) + ⟨vkgk, x̄2 − xk+1⟩. (24)

One can see that limk→∞ H(x̄1, xk) − H(x̄1, xk+1) = 0 by the assumption in (a) that
{H(x̄1, xk)} is convergent. Since ∥gk∥ = 1, we obtain by Cauchy-Schwartz that

lim sup
k→∞

⟨vkgk, x̄2 − xk+1⟩ ≤ lim sup
k→∞

vk∥x̄2 − xk+1∥ = 0.

The above expression, combined with (24) gives

lim sup
k→∞

⟨∇1d(xk+1, xk), x̄1 − x̄2⟩ ≤ 0.

By exchanging x̄2 with x̄1, we obtain that lim supk→∞ ⟨∇1d(xk+1, xk), x̄2 − x̄1⟩ ≤ 0. Con-
sequently, we arrive at limk→∞ ⟨∇1d(xk+1, xk), x̄1 − x̄2⟩ = 0, and then by Assumption 2
x̄1 = x̄2. Therefore, {xk} is shown to weakly converge to an optimal solution of (4).

By virtue of the notion of induced proximal distance and Lemmas 7-8, we establish the
convergence theorems of the interior quasi-subgradient method when using three typical
stepsize rules: the constant, diminishing and dynamic stepsize rules (see [33,42,62]).

4.1 Global convergence and iteration complexity

In this subsection, we will investigate the convergence properties, including the global con-
vergence and iteration complexity, under the assumption of the Hölder condition of order p,
when using the constant/diminishing/dynamic stepsize rules respectively.
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4.1.1 Constant stepsize

Theorem 1 Let (d,H) ∈ F+(C, V ) and let {xk} be a sequence generated by Algorithm 1.
Suppose that Assumption 1 is satisfied and vk ≡ v > 0 for any k ∈ N. Then the following
assertions are true.

(i) min
i=1,...,k

f(xi) ≤ f∗ + L

(
v

σ
+

1

kv
distH(X∗, x1)

)p
.

(ii) lim infk→∞ f(xk) ≤ f∗ + L
( v
σ

)p
.

Proof (i) Without loss of generality, we assume that xi /∈ X∗ for i = 1, . . . , k; otherwise,
assertion (i) of this theorem follows automatically. Let x∗ ∈ X∗. Then, following Lemma
7(ii), we obtain by (22) that

0 ≤ H(x∗, xk+1) ≤ H(x∗, x1)− kv

(
mini=1,...,k f(xi)− f∗

L

) 1
p

+ k
v2

σ
.

Since x∗ ∈ X∗ is arbitrary, assertion (i) of this theorem now follows from the above expres-
sion by taking the infimum over X∗ in the right-hand side and re-arranging the resulting
expression.

(ii) It is enough to assume that xk ∈ X∗ only occurs for finitely many times; otherwise,
the left-hand side of assertion (ii) reduces to f∗, and hence it automatically holds. We can
further assume that xk /∈ X∗ for each k ∈ N. Indeed, since there exists N ∈ N such that
xk ̸∈ X∗ for all k ≥ N , we can restrict the analysis to the tail {xk}k≥N instead. Hence,
we can assume that xk /∈ X∗ for each k ∈ N, and we are in conditions of Lemma 7. Let
x∗ ∈ X∗. By Lemma 7(ii), (22) holds with v in place of vk. Re-arranging (22) gives

n∑
k=1

(f(xk)− f∗)
1
p

n
≤ L

1
p

nv
H(x∗, x1) +

v

σ
L

1
p .

Then, by applying Lemma 1 with (f(xk)− f∗)
1
p and 1 in place of ak and vk, we derive

lim inf
n→∞

(f(xn)− f∗)
1
p ≤ lim inf

n→∞

n∑
k=1

(f(xk)− f∗)
1
p

n
≤ lim inf

n→∞

L
1
p

nv
H(x∗, x1) +

v

σ
L

1
p =

v

σ
L

1
p .

Consequently, assertion (ii) of this theorem follows, and the proof is complete.

4.1.2 Diminishing stepsize

Theorem 2 Let (d,H) ∈ F+(C, V ) and let {xk} be a sequence generated by Algorithm 1.
Suppose that Assumption 1 is satisfied and {vk} satisfies

vk > 0, lim
k→∞

vk = 0 and
∞∑
k=1

vk = ∞. (25)

Then the following assertions are true.
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(i) min
i=1,...,k

f(xi) ≤ f∗ + L

distH(X∗, x1) +
1

σ

∑k
i=1 v

2
i∑k

i=1 vi


p

.

(ii) lim infk→∞ f(xk) = f∗.
(iii) If

∑∞
k=0 v

2
k < ∞, then {xk} weakly converges to an optimal solution of (4) provided

one of the following assumptions:
(a) p = 1, f is weakly lsc on clC ∩ V , and Assumption 2 is satisfied.
(b) H is finite-dimensional.

Proof (i) As in the previous theorem, we may assume that xi /∈ X∗ for i = 1, . . . , k; oth-
erwise, assertion (i) follows automatically. Let x∗ ∈ X∗. Then, following Lemma 7(ii), we
obtain by (22) that

0 ≤ H(x∗, xk+1) ≤ H(x∗, x1)−
(
mini=1,...,k f(xi)− f∗

L

) 1
p

k∑
i=1

vi +
1

σ

k∑
i=1

v2i

Since x∗ ∈ X∗ is arbitrary, we can take infimum in the right-hand side of the expression
above, and part (i) follows by re-arranging the resulting expression.

(ii) Let x∗ ∈ X∗. As in the proof of Theorem 1(ii), we can assume, without loss of
generality, that xk /∈ X∗ for each k ∈ N, and then Lemma 7 follows. Re-arranging (22) gives∑n

k=1 vk(f(xk)− f∗)
1
p∑n

k=1 vk
≤ L

1
p∑n

k=1 vk
H(x∗, x1) +

1

σ

∑n
k=1 v

2
k∑n

k=1 vk
.

By our assumption,
∑∞
k=1 vk = ∞. Hence, we can apply the second statement of Lemma 1

with ak := vk and a := 0, to conclude that limn→∞

∑n
k=1 v

2
k∑n

k=1 vk
= 0 (as limk→∞ vk = 0). By

taking limits for n→ ∞ in the expression above, and recalling that
∑∞
k=1 vk = ∞, we deduce

that the left-hand side tends to 0. Now we apply Lemma 1 again, with ak := (f(xk)− f∗)
1
p ,

vk as in the Lemma, and use the fact that the left-hand side in the expression above tends
to 0, to deduce part (ii).

(iii) By (21) and the assumption that
∑∞
k=0 v

2
k < ∞, one sees that {H(x∗, xk)} is a

quasi-Fejér sequence; thus Lemma 4 is applicable to concluding that

{H(x∗, xk)} is convergent for each x∗ ∈ X∗ (26)

and
∞∑
k=1

vk(f(xk)− f∗)
1
p <∞. (27)

Then by Definition 5(iii), {xk} is bounded and must have weak cluster points. Below we
show the convergence of {xk} in the following two situations.

(a) Note that (25), (26) and the boundedness of {xk} validate assumption (a) in Lemma
8. On the other hand, by the assumption that p = 1, we obtain by the Lipschitz continuity
and Proposition 4(iii) (with xk, xk+1, gk in place of x, P(vg, x), g) that

f(xk+1)− f(xk) ≤ L∥xk+1 − xk∥ ≤ L

σ
vk
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(thanks to ∥gk∥ = 1). This, together with (25) and (27), verifies the assumptions in Lemma
5 (with f(xk) − f∗, vk,

L
σ in place of uk, βk, a). Hence it follows from Lemma 5 that

limk→∞ f(xk) = f∗. Then, by the assumption that f is weakly lsc on clC ∩ V , one has that
each weak cluster point of {xk} is an optimal solution of (4); this validates assumption (b)
in Lemma 8. These, together with Assumption 2 make Lemma 8 applicable to showing the
weak convergence of {xk} to an optimal solution of (4).

(b) Suppose that H is finite-dimensional. Since {xk} is bounded, and by assertion (ii) and
by the continuity of f , we have that {xk} has a cluster point x̄ ∈ X∗. Noting by assumption
that limn→∞

∑∞
k=n v

2
k = 0, we derive by (21) that {H(x̄, xk)} is a Cauchy sequence, and

thus it converges to 0 (by Definition 5(ii)). Therefore, by Definition 5(i), we conclude that
{xk} converges to this x̄. The proof is complete.

4.1.3 Dynamic stepsize

Theorem 3 Let (d,H) ∈ F+(C, V ) and let {xk} be a sequence generated by Algorithm 1.
Suppose that Assumption 1 is satisfied and {vk} is given by

vk =
σ

2
λk

(
f(xk)− f∗

L

)1

p
with 0 < λ ≤ λk ≤ λ < 2. (28)

Then the following assertions are true.

(i) min
i=1,...,k

f(xi) ≤ f∗ + L

(
4

kσλ(2− λ)
distH(X∗, x1)

)p
2
.

(ii) limk→∞ f(xk) = f∗.
(iii) {xk} weakly converges to an optimal solution of (4) provided one of the following

assumptions:
(a) f is weakly lsc on clC ∩ V , and Assumption 2 is satisfied.
(b) H is finite-dimensional.

Proof Without loss of generality, we assume that xk /∈ X∗ for each k ∈ N; otherwise, one
checks by (28) that vk = 0 whenever xk ∈ X∗, and so the generated sequence stays at this
optimal solution, that is, assertions of this theorem follow automatically.

(i) Let x∗ ∈ X∗. Following Lemma 7(ii), we obtain by (21) and (28) that

H(x∗, xk+1) ≤ H(x∗, xk)− σ
4λk(2− λk)

(
f(xk)−f∗

L

) 2
p

≤ H(x∗, xk)− σ
4λ(2− λ)

(
f(xk)−f∗

L

) 2
p

.
(29)

Noting that f(xk) ≥ f∗ (as xk ∈ X) for each k ∈ N, we have inductively that

0 ≤ H(x∗, xk+1) ≤ H(x∗, x1)−
∑k
i=1

σ
4λ(2− λ)

(
f(xi)−f∗

L

) 2
p

≤ H(x∗, x1)− k σ4λ(2− λ)
(

mini=1,...,k f(xi)−f∗

L

) 2
p

.

Assertion (i) of this theorem follows as x∗ ∈ X∗ is arbitrary.
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(ii) Note that f(xk) ≥ f∗ (as xk ∈ X) for each k ∈ N and by (29) that {H(x∗, xk)}
is decreasing and thus convergent (as H(·, ·) is nonnegative) for each x∗ ∈ X∗. Hence, we
obtain by (29) that limk→∞ f(xk) = f∗.

(iii) Recalling that {H(x∗, xk)} is decreasing, one sees by Definition 5(iii) that {xk} is
bounded and must have weak cluster points. Below we show the convergence of {xk} under
the assumptions indicated either by (a) or (b).

(a) Note by (28) and assertion (ii) of this theorem that limk→∞ vk = 0. This, together
with the bounded property of {xk} and the convergence property of {H(x∗, xk)} mentioned
above, confirms assumption (a) in Lemma 8. The weakly lsc assumption of f and assertion
(ii) of this theorem validate assumption (b) in Lemma 8. These, together with Assumption
2, make Lemma 8 applicable to showing the weak convergence of {xk} to an optimal solution
of (4).

(b) Suppose that H is finite-dimensional. Assertion (ii) of this theorem and the conti-
nuity of f show that each cluster point of {xk} is an optimal solution of (4), i.e., there
exists a subsequence {xki} such that limi→∞ xki = x̄ ∈ X∗. Then one has by Definition
5(ii) that limi→∞ H(x̄, xki) = 0, and then, by the decreasing property of {H(x̄, xk)} that
limk→∞ H(x̄, xk) = 0. Hence, Definition 5(i) reveals that {xk} converges to this x̄. The proof
is complete.

Remark 2 (a) Assertions (i) of the above theorems show the iteration complexity of the
interior quasi-subgradient method when using different types of stepsizes. In particular,
Theorems 1(i) and 3(i) show that the interior quasi-subgradient method possesses the com-
putational complexity of O(1/kp) and O(1/k

p
2 ) to approach (a certain region of) the optimal

value when the constant and dynamic stepsize rules are used, respectively. When the dimin-
ishing stepsize is given by

vk := ck−s with c > 0 and s ∈ (0, 1), (30)

Theorem 2(i) exhibits the computational complexity of O(1/kpmin{s,1−s}) for the interior
quasi-subgradient method, and particularly, the optimal complexity is gained when s = 1

2 .
(b) Theorem 1(ii) presents the convergence of the function values to the optimal value

within a certain region, proportional to vp, for the constant stepsize rule, and assertions (ii)
of Theorems 2 and 3 reveal the convergence to the optimal value when using the diminishing
and dynamic stepsize rules, respectively.

(c) Assertions (iii) of Theorems 2 and 3 demonstrate the weak convergence of the iterates
to the optimal solution when using the diminishing and dynamic stepsize rules. To the
best of our knowledge, this paper seems the first work discussing the weak convergence of
subgradient method with non-Euclidean distance in Hilbert spaces.

(d) When d(x, y) = H(x, y) = 1
2∥x−y∥

2, the resulting interior quasi-subgradient method
is reduced to the (Euclidean) projected quasi-subgradient method [37], and Theorems 1-3
cover the global convergence results for the (Euclidean) projected quasi-subgradient method
in Euclidean spaces in [33, Theorems 4.1 and 4.2].

4.2 Convergence rates

The establishment of convergence rates is important in analyzing the numerical perfor-
mance of relevant algorithms. The concept of weak sharp minimum is a common assump-
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tion for analyzing the convergence rates of many optimization algorithms; see [18,32,33,63]
and references therein. Particularly, the convergence rates of (Euclidean) projected quasi-
subgradient methods in Euclidean spaces were established in [33] under the assumption of
weak sharp minimum of Hölderian order. To establish the convergence rate for the interi-
or quasi-subgradient method in the sequel, we introduce a notion of weak sharp minimum
property relative to the induced proximal distance.

Definition 7 Let η > 0 and q > 0. f is said to satisfy the weak sharp minimum property
of order q relative to the induced proximal distant H on X with modulus η if

f(x)− f∗ ≥ η distqH(X∗, x) for each x ∈ X. (31)

In the case when the proximal distance is the Euclidean distance (see Example 1(i))
or based on the second order homogeneous kernels [7], the induced proximal distance H
is proportional to the Euclidean distance, and thus, the weak sharp minimum property of
order q relative to H is reduced to the classical weak sharp minimum property of order 2q
with a different modulus. In the rest of this paper, we make the following assumption to
establish the convergence rates for the interior quasi-subgradient method.

Assumption 3 Let η > 0 and q > 0, and suppose that f satisfies the weak sharp minimum
property of order q relative to the induced proximal distant H on X with modulus η.

4.2.1 Constant stepsize

Theorem 4 Let (d,H) ∈ F+(C, V ) and let {xk} be a sequence generated by Algorithm 1.
Suppose that Assumptions 1 and 3 are satisfied and vk ≡ v > 0 for each k ∈ N. Then the
following assertions are true.

(i) If q = p, then either xk ∈ X∗ for some k ∈ N or there exists τ ∈ [0, 1) such that

distH(X∗, xk+1) ≤ τkdistH(X∗, x1) + max

{(
L

η

) 1
p

, v

}
v

σ
for each k ∈ N.

(ii) If q > p and v <
(
L
η σ

q−p(pq )
q
) 1

2q−p

, then either xk ∈ X∗ for some k ∈ N or there

exists τ ∈ (0, 1) such that

distH(X∗, xk+1) ≤ τkdistH(X∗, x1) +

(
L

η

) 1
q ( v

σ

) p
q

for each k ∈ N.

Proof Without loss of generality, we assume that xk /∈ X∗ for each k ∈ N; otherwise, this
theorem holds automatically. By Lemma 7(ii) and Assumption 3, we obtain by (21) and
(31) that, for each k ∈ N

distH(X∗, xk+1) ≤ distH(X∗, xk)− v
( η
L

) 1
p

dist
q
p

H(X∗, xk) +
v2

σ
. (32)

Below, we prove this theorem in the following two cases.
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(i) Suppose that q = p. Setting τ := (1− v
(
η
L

) 1
p )+ ∈ [0, 1), we achieve by (32) that

distH(X∗, xk+1) ≤ τdistH(X∗, xk) +
v2

σ
for each k ∈ N.

Then we inductively obtain that, for each k ∈ N

distH(X∗, xk+1) ≤ τkdistH(X∗, x1) +
v2

(1− τ)σ

= τkdistH(X∗, x1) + max

{(
L

η

) 1
p

, v

}
v

σ
.

(ii) Suppose that q > p. By the assumptions and (32), Lemma 2(ii) is applicable (with

distH(X∗, xk),
q
p − 1, v

(
η
L

) 1
p and v2

σ in place of uk, r, a and b) to concluding that there

exists τ ∈ (0, 1) such that the conclusion follows. The proof is complete.

4.2.2 Diminishing stepsize

Theorem 5 Let (d,H) ∈ F+(C, V ) and let {xk} be a sequence generated by Algorithm 1.
Suppose that Assumptions 1 and 3 are satisfied with q = p and vk is given by (30). Then,
either xk ∈ X∗ for some k ∈ N or there exists N ∈ N such that

distH(X∗, xk) ≤
2c

σ

(
L

η

) 1
p

k−s for each k ≥ N.

Proof Without loss of generality, we assume that xk /∈ X∗ for each k ∈ N; otherwise, this
theorem holds automatically. Then, we obtain by (21) and (31) that

distH(X∗, xk+1) ≤
(
1− ck−s

( η
L

) 1
p

)
distH(X∗, xk) +

c2

σ
k−2s for each k ∈ N.

Lemma 3(i) is applicable (with c
(
η
L

) 1
p , c2

σ and 2s in place of a, b and t) to obtaining the
conclusion. The proof is complete.

4.2.3 Dynamic stepsize

Theorem 6 Let (d,H) ∈ F+(C, V ) and let {xk} be a sequence generated by Algorithm 1.
Suppose that Assumptions 1 and 3 are satisfied and vk is given by (28). Then the following
assertions are true.

(i) If 2q = p, then there exists τ ∈ [0, 1) such that

distH(X∗, xk+1) ≤ τkdistH(X∗, x1) for each k ∈ N.

(ii) If 2q > p, then there exists γ > 0 such that

distH(X∗, xk+1) ≤
distH(X∗, x1)

(1 + γk)
p

2q−p

for each k ∈ N. (33)
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Proof Without loss of generality, we assume that xk /∈ X∗ for each k ∈ N; otherwise, one
checks by (28) that vk = 0 whenever xk ∈ X∗, and so the generated sequence stays at
this optimal solution; consequently, assertions of this theorem follow automatically. Then
we obtain by (29) and (31) that

distH(X∗, xk+1) ≤ distH(X∗, xk)−
σ

4
λ(2− λ)

( η
L

) 2
p

dist
2q
p

H (X∗, xk) for each k ∈ N. (34)

(i) Suppose that 2q = p. Setting τ := (1− σ
4λ(2− λ)

(
η
L

) 2
p )+ ∈ [0, 1), we obtain by (34)

that
distH(X∗, xk+1) ≤ τdistH(X∗, xk) ≤ τkdistH(X∗, x1) for each k ∈ N.

(ii) Suppose that 2q > p. Then, by (34), Lemma 2(i) is applicable (with distH(X∗, xk),
σ
4λ(2−λ)(

η
L )

2
p , 2q

p −1 in place of uk, a, r) to concluding that (33) holds with γ := (2q−p)σ
4p λ(2−

λ)
(
η
L

) 2
p dist

2q−p
p

H (X∗, x1).

Remark 3 (a) Theorem 6 (resp., 4) shows the linear (or sublinear) convergence rate (mea-
sured by the induced proximal distance) of the interior quasi-subgradient method with the
dynamic (resp., constant) stepsize to the solution set (resp., a certain region of the solution
set) under the assumption of weak sharp minimum of Hölderian order relative to the induced
proximal distance.

(b) When using the diminishing stepsize rule (30) and under the weak sharp minimum
property of order p relative to the induced proximal distance, Theorem 5 shows the conver-
gence of the interior quasi-subgradient method to an optimal solution at a sublinear rate
O(k−s). This is faster than the one established in Theorem 2 without the assumption of the
weak sharp minimum property, namely O(1/kpmin{s,1−s}) in Remark 2(a), because of the
assumed p ≤ 1.

(c) To the best of our knowledge, the established convergence rates of subgradien-
t method with non-Euclidean distance in Hilbert spaces are new in the literature. When
d(x, y) = H(x, y) = 1

2∥x−y∥
2, the resulting interior quasi-subgradient method is reduced to

the (Euclidean) projected quasi-subgradient method [37], and Theorems 4-6 cover the con-
vergence rate results for the (Euclidean) projected quasi-subgradient method in Euclidean
spaces in [33, Theorem 4.3].

5 Conclusion

In this paper, we proposed an interior quasi-subgradient method based on non-Euclidean
distances to solve constrained and nondifferentiable quasi-convex optimization problems. In
the proposed algorithm, a proximal distance was adopted in the projection-like mapping.
The types of proximal distances include Bregman distances, φ-divergences, and second order
homogeneous kernels. Moreover, a new approach for calculating a quasi-subgradient was
provided via the weak limit of Gâteaux derivatives.

Our convergence analysis of the interior quasi-subgradient method was developed for
three prototypical types of stepsizes: constant, diminishing, and dynamic. Convergence re-
sults of objective values, including the global convergence and iteration complexity, were
established under the assumption of the Hölder condition of order p. Weak convergence
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results of iterates were obtained under the assumptions of the Lipschitz condition and the
norm compatibility/strictly convexity of Bregman kernel. Moreover, convergence rates were
estimated by assuming a Hölder-type weak sharp minimum condition relative to an induced
proximal distance.

It is an open question whether the weak convergence can be obtained under the Hölder
condition with general p < 1.

Acknowledgements The authors are grateful to the editor and the anonymous reviewers for their valu-
able comments and suggestions toward the improvement of this paper. Regina S. Burachik’s and Xiaoqi
Yang’s work was supported in part by the Research Grants Council of Hong Kong (PolyU 152342/16E).
Yaohua Hu’s work was supported in part by the National Natural Science Foundation of China (12071306,
11871347, 32170655), Natural Science Foundation of Guangdong Province of China (2019A1515011917,
2020B1515310008), Natural Science Foundation of Shenzhen (JCYJ20190808173603590).

References

1. Y. I. Alber, A. N. Iusem, and M. V. Solodov. On the projected subgradient method for nonsmooth
convex optimization in a Hilbert space. Mathematical Programming, 81:23–35, 1998.

2. A. Agrawal and S. Boyd. Disciplined quasiconvex programming. Optimization Letters, 14:1643–1657,
2020.

3. A. Auslender and M. Teboulle. Interior gradient and ϵ-subgradient descent methods for constrained
convex minimization. Mathematics of Operations Research, 29(1):1–26, 2004.

4. A. Auslender and M. Teboulle. Interior projection-like methods for monotone variational inequalities.
Mathematical Programming, 104:39–68, 2005.

5. A. Auslender and M. Teboulle. Interior gradient and proximal methods for convex and conic optimiza-
tion. SIAM Journal on Optimization, 16(3):697–725, 2006.

6. A. Auslender and M. Teboulle. Projected subgradient methods with non-Euclidean distances for non-
differentiable convex minimization and variational inequalities. Mathematical Programming, 120:27–48,
2009.

7. A. Auslender, M. Teboulle, and S. Ben-Tiba. Interior proximal and multiplier methods based on second
order homogeneous kernels. Mathematics of Operations Research, 24(3):645–668, 1999.

8. A. Auslender, M. Teboulle, and S. Ben-Tiba. A logarithmic-quadratic proximal method for variational
inequalities. Computational Optimization and Applications, 12:31–40, 1999.

9. D. Aussel and N. Hadjisavvas. Adjusted sublevel sets, normal operator, and quasi-convex programming.
SIAM Journal on Optimization, 16(2):358–367, 2005.
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