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Abstract

Cell fate conversion by overexpressing defined factors is a powerful tool in regenerative medicine. However, identifying key
factors for cell fate conversion requires laborious experimental efforts; thus, many of such conversions have not been
achieved yet. Nevertheless, cell fate conversions found in many published studies were incomplete as the expression of
important gene sets could not be manipulated thoroughly. Therefore, the identification of master transcription factors for
complete and efficient conversion is crucial to render this technology more applicable clinically. In the past decade,
systematic analyses on various single-cell and bulk OMICs data have uncovered numerous gene regulatory mechanisms,
and made it possible to predict master gene regulators during cell fate conversion. By virtue of the sparse structure of
master transcription factors and the group structure of their simultaneous regulatory effects on the cell fate conversion
process, this study introduces a novel computational method predicting master transcription factors based on group sparse
optimization technique integrating data from multi-OMICs levels, which can be applicable to both single-cell and bulk
OMICs data with a high tolerance of data sparsity. When it is compared with current prediction methods by
cross-referencing published and validated master transcription factors, it possesses superior performance. In short, this
method facilitates fast identification of key regulators, give raise to the possibility of higher successful conversion rate and
in the hope of reducing experimental cost.
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Introduction

Multicellular organisms are consisted of several cell types, where
different types of cell express specific sets of proteins and RNAs
that control respective cell morphology. The specification of a
particular cell type typically involves the programmed expres-
sion of several thousand genes controlled by regulators, such
as transcription factors (TFs). Recent technologies that enable
cells converting from one type into another, called cell fate con-
version, provide a promising strategy of regenerative medicine
to produce functional cells that are lost in diseases such as
Parkinson disease [1] and corneal epithelial stem cell deficiency
[2]. There are a large number of cell fate conversion examples
achieved just by the overexpression of a few key TFs. This
suggests that cell identity defining expression profiles can be
orchestrated by the combination of a small number of TFs, which
are called master TFs [3]. For example, POU5SF1 (OCT-4), SOX2,
NANOG, KLF4 in embryonic stem cells [4, 5]; MYOD1, MYOG and
MYTFS in muscle cells [6, 7]; GATA1, CEBPA and SFPI1 in blood
cells [8], TBX21 and FOXP3 in T cells [9] and CDX2 in intestine
cells [10]. These respective sets of master TFs function at the
apex of transcriptional hierarchies, regulate downstream tissue-
specific genes, and eventually determine the respective cell fates
and identities. The identification of master TFs in different cell
types is vital in both developmental biology and regenerative
medicine, yet the traditional approach requires tedious experi-
ments and laborious efforts [4, 11-13]. Despite great efforts made
by researchers, many of the fate converted cells published were
indeed not completely converted [14], for example, as these
converted cells were unable to fully replicate the cell function
or gene expression pattern of their target cells [15].

Computational methods to predict master TFs for cell
fate conversion

Recent advancement of high-throughput sequencing technolo-
gies generates an enormous amount of OMICs (genomics, tran-
scriptomics, epigenomics, proteomics and metabolomics) data
in various cell types. Systematic analysis on these genome-
wide OMICs data grants the possibility to predict master TFs
during cell fate conversion. Shmulevich and colleagues ranked
the expression difference between the two cell types to identify
expression-reversed TF-TF pairs, based on the observation that
a pair of mutually repressive TFs are often a toggle switch to
control the cell fate of ‘sister’ lineages [16]. However, this method
purely relies on the expression of TFs and does not take into
account the regulatory relationship between them and cell-type
specific genes, thus these factors may not achieve satisfactory
cell fate conversion results. In fact, gene expression profile com-
parisons between engineered cells and their in vivo counter-
parts showed that most published cell fate conversions failed to
properly silence or activate many of the key genes, despite the
evident phenotype and marker expression in these engineered
cells [14]. Therefore, not only the expression of TFs but also their
downstream regulatory networks should be considered during
the prediction of master TFs.

With the network-based strategy, two steps are usually
required for the identification of master TFs: (i) construct
high-quality transcriptional regulatory network and (ii) search
potential master TFs from the constructed network. To construct
transcriptional regulatory network, reverse engineering was
commonly performed on both bulk transcriptome data [14,
17] and single-cell transcriptome data [18, 19], although it
suffers from the drawback that direct and indirect TF-to-target

interactions are often indistinguishable. Networks are also
constructed from tissue-specific binding of TFs on target genes’
regulatory regions, which reveal the regulatory direction but
not the subsequent transcription effects on target genes [20].
Our previous studies have shown that only less than 20% of
TF bound targets to have their expression level significantly
altered under TF perturbation in mammalian cells [21, 22]. To
conclude, integrating both transcriptome data and TF binding
information is necessary to provide more accurate networks
than those derived from either of them alone [23]. To improve
the accuracy of master TF prediction during cell fate conversion,
one should consider cell-type specific gene regulatory network
incorporating both TF binding and expression dependency
among TFs and targets.

Within a cell-type specific network, highly-connected hub
TFs are usually considered as master TFs, since they regulate
more genes [24]. Manipulating a few hub TFs may then be able
to control most cell-type specific genes needed in cell fate con-
version. In addition, TFs can also be classified into three levels
by comparing their in- and out-degrees in these networks. TFs at
the top level, which have higher out-degree than in-degree, are
found to be important for cell identity [20, 25]. Thus, previous
studies have applied these two methods on TF binding net-
works for master TF screening [20, 26]. However, it is difficult to
distinguish cell-type specific master TFs from non-specific TFs
with ubiquitous binding or regulations in many cell types. For
instance, CTCF, a chromosomal architectural protein expressed
in many tissues/cell types, is always in the pool of either hub TFs
[26] or top TFs [20].

Therefore, even with a high-quality cell-type specific network
considering both expression dependency and TF binding, detect-
ing master TFs from hub TFs or top TFs may still be difficult.
Firstly, it is because many hub/top TFs may be redundant as
they share a similar downstream target group. To alleviate this
problem, Mogrify, a network-based method, added an extra step
to remove redundant TFs [27]. Secondly, this target group con-
trolled by several hub/top TFs may not cover sufficient lineage-
specific genes that are required for complete cell fate conversion.
Consequently, most of the current cell fate conversions were
found to be incomplete, in which the acquired engineered cells
still possessed hundreds of differentially expressed genes (DEGs)
when they were compared to their target in vivo counterparts
[28]. In order to mitigate this shortcoming, CellNet provides a
utility to find master TF so as to improve these incomplete cell
fate conversions. But prediction performance of both methods
was not satisfactory [14, 27, 28]. This is probably due to the low
accuracy of the predefined networks used by these two meth-
ods. Mogrify implemented TF-target interactions from database
STRING and Motif Activity Response Analysis (MARA), in which
most of TF-target interactions are predicted and not cell specific.
CellNet constructs specific networks for 20 cell types through
correlation-based analyses on transcriptomes, whose quality
was shown to be only slightly higher than random guessing [17].
Moreover, for those cell types lacking predefined cell-specific
regulatory network information, these two methods may be
more difficult to get satisfactory results.

Multi-OMICs integration improve prediction
performance

In addition to transcriptome and TF binding information, recent
discovery of super-enhancers gives rise to an opportunity
to integrate epigenetic information and improve master TF
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identification. Super-enhancers are large clusters of enhancers,
whose activities can be identified by epigenetic markers or
TF binding. It has been reported that super-enhancers are
occupied by master TFs, which drives the expression of cell
identity defining genes [29, 30]. Based on histone modification
or mediator binding signals, super-enhancers could be detected
in various tissues or cell types [31].

In the past decade, single-cell RNA sequencing (scRNA-
seq) technology allows profiling transcriptomes of hundreds to
thousands of single cells in one single experiment. This means
that one scRNA-seq experiment can produce as many or even
more transcriptome profiles than hundreds of the previous bulk
sequencing experiments. scRNA-seq is capable of capturing cell
heterogeneity and stochastic gene expression, which records
more expression variations in a cell population. Given that
a sufficient number of transcriptome profiles and significant
expression variations are critical to network construction in all
reverse engineering methods, single-cell transcriptomes would
be a suitable data source for such purpose, as well as inferring
master TF in cell fate conversion.

As shown in above, different types of OMICs data could be
utilized to provide useful information in master TFs identifica-
tion. However, efficient computational methods are lacking to
integrate these data for accurate predictions. A desirable method
should consider the quality of cell-specific transcriptional regu-
latory network, while providing an efficient way to find master
TFs from the network, and make sure that all genes needed to
be converted are controlled by the predicted master TFs directly
or indirectly.

Mathematical modeling for integrating Multi-OMICs
data

Sparse optimization, also called LASSO (least absolute shrinkage
and selection operator) [32] in statistics or basis pursuit [33] in
compressed sensing, is one of the most popular and practical
computational methods for data analysis and machine learning.
Particularly, by virtue of the sparse structure ubiquitously arising
from practical applications, the principle of sparse optimization
technique aims to find a few major factors in data fitting mech-
anism. In mathematics, the sparsity of variables is usually mea-
sured by the original L, penalty (i.e. the number of nonzeros of
the variable) or the relaxed L, penalty (see section Methods and
Discussion for the theoretical comparison); the resulting sparse
optimization techniques are called L, regularized and L, regu-
larized sparse optimization methods, respectively. The sparse
optimization technique has also been applied in bioinformatics,
such as gene regulatory networks inference [23].

Besides the sparse structure, group structure is another com-
mon structure in various applications, in which the solution
has a natural grouping of its components, and the components
within each group are likely to be either zero or nonzero simul-
taneously. In mathematics, the group sparsity of variables can
be measured by the L, penalty (i.e. the number of nonzero
groups) [34] or the L,; penalty [35]. By employing the group
sparse penalty, group sparse optimization technique can pro-
mote the group structure and reduce the degrees of freedom
of the solution, thereby leading to better recovery or predic-
tion performance in various disciplines [35-37]. Group sparse
optimization technique has also been applied to characterize
the structure of TF complex and improve the accuracy of GRN
inference [34].

In a cell fate conversion, all genes needed to be converted
are simultaneously changed by only a few master TFs from one

cell type (donor cell) into another cell type (target cell), which
meets the essentials of group and sparse structures. Motivated
by the sparse structure of master TFs and the group structure
of the transcriptional regulatory network controlled by mas-
ter TFs, this study developed a novel bicinformatics method
based on the group sparse optimization technique to address
the problem of inefficient and incomplete cell fate conversion.
The methods using the L,o and L,; penalties are called group
sparse optimization (GSO) and group LASSO (gLASSO), respec-
tively. In details, it treats the regulatory coefficients of each TF
to all genes as a group, formulates the gene regulatory network
during cell fate conversion into GSO model and predicts master
TFs by integrating bulk/single-cell transcriptome, TF binding
and super-enhancer information. To evaluate the performance
of different master TF prediction methods, a scoring system
based on published, wet-lab validated master TFs, which we call
standard TFs was utilized. When this method was compared
with other methods utilizing different combinations of OMICs
datasets by cross-referencing their results with existing stan-
dard TFs, it demonstrated superior performance. This superior-
ity was achieved in several aspects: (i) high quality of cell-specific
regulatory information is extracted by integrating multiple cell-
specific OMICs data; (ii) network construction and master TF
prediction are processed simultaneously; (iii) all genes, whose
expression are altered in cell fate conversion, are considered
as a whole target gene group; this makes sure all essential
genes were covered as targets of the inferred master TFs; (iv)
regulatory effect of master TFs on their targets are quantified
and (v) genomic regions of super-enhancers can be incorporated
to narrow down the candidates of master TFs. Furthermore,
this method was found to be applicable to both single-cell and
bulk OMICs data and achieves similar performance. It does not
require preliminary gene regulatory information of the target
cells. This method can help researchers to find master TFs when
new cell fate conversions are needed.

Results

To assess the efficiency of different approaches in master TF
inference, we took the most well-known cell fate conversion case
- induced pluripotent stem cell (iPSC) as an example. Takahasi
and Yamanaka firstly reported a successful cell reprogramming
from mouse fibroblasts into embryonic stem cell (mESC)-like
iPSCs through forced overexpression of four TFs, Pou4fl (Oct-4),
Sox2, K1f4 and Myc (OSKM) [4]. Other TF combinations, such as
Sall4, Nanog, Esrrb and Lin28 (SNEL), can also reprogram mouse
fibroblasts into iPSCs [5, 38, 39]. Besides, overexpression of some
chromatin modifiers, for instance, Tetl [40], Prdm14 and Jarid2
[41] were found to play important roles in cell reprogramming.
We searched all TFs (including chromatin modifiers) that have
been used to induce iPSC, and listed the number of publications
that used such TF for iPSC induction in Figure 2. We will call them
standard iPSC factors hereafter. Even though other untested TFs
might also have the potential for cell programming, this iPSC
factor list is able to act as a referencing standard to evaluate
different master TF prediction methods.

We have collected predicted TF binding sites (TFBSs),
TFBSs identified by chromatin immunoprecipitation coupled
with sequencing or microarray (ChIP-seq/chip), single-cell and
bulk transcriptome data, super-enhancer regions and high-
quality mESC networks for iPSC factor prediction (data were
all derived from mESCs and can be downloaded from https://
ginlab.sysu.edu.cn/GSO). To assess their contribution to iPSC
factor prediction, we used different data combinations and
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Figure 1. Workflow of the master TF inference with GSO. DEGs between donor cells and target cells are identified by comparing expression profiles of two cell types.
Cell-type-specific gene regulatory networks are hidden in the transcriptomes derived from perturbations on the target/donor cells. From these transcriptomes (usually
>50 samples/cells), expression profiles of TFs form matrix A, while expression profiles of DEGs form matrix B. The linear model AX = B+ ¢ approximately describes the
expression dependency between TFs and DEGs, in which X represents the regulatory strength while ¢ is the matrix of noise. TF binding and super-enhancer information
are transformed into X as an initial guess for the solution searching. Master TF inference is an optimization problem to find an X to minimize the difference between
AX and B with only a small number of selected TFs, which its regulatory strength on DEGs (X;.) are non-zeros. Red color in the solution matrix X means positive
regulation, blue color means negative regulation and white means no regulation. TFs with colors (non-zeros in the solution X) are the predicted master TFs that show
regulatory effects on DEGs that need to be changed from donor cells into target cells. The middle panel shows the Lj o regularization model (a GSO model), while the

lower panel lists the structures of matrix A, B and X.

computational methods to predict and rank the TFs. Figure 2
compares the results of different approaches utilizing diverse
data and methods, including Mogrify [27], CellNet [14] and our
GSO method (Figure 1).

To quantify the performance of each method and data com-
bination, a total score of each method summarizes the rankings
of all iPSC factors; on the other hand, a total weighted score
further considers the usage of an iPSC factor in cell repro-
gramming (see section Methods). Consistent with the previous
comparison between Mogrify and CellNet, Mogrify obtained a

higher total score and total weighted score than CellNet [27]
(Figure 2, Supplementary Table S2A and S2B). Top 20 Mogrify TFs
contain two Yamanak factors (OSKM), two SNEL factors and two
other iPSC factors, but only three iPSC factors were reported
by CellNet (Figure 2). Our method, GSO with the integration of
multiple OMICs data, ranked top 20 TFs out of 939 candidates and
achieved the highest total scores and total weighted scores. Its
performance on single-cell data was as good as that on bulk-cell
data. In the following sections, we analyzed and compared the
contributions of various OMICs data to prediction accuracy, as
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Figure 2. Predictions of master TFs for mouse fibroblast to mESC conversion by various methods assessed by standard iPSC factors. Standard iPSC factors are listed in
the first column, which includes Pou4f1 (Oct-4), Sox2, KIf4 and Myc (OSKM, green) [4], Sall4, Nanog, Esrrb and Lin28 (SNEL, red) [5, 38, 39], and other TFs and chromatin
modifiers (yellow), Tetl [40], Prdm14 [41], Jarid2 [41], Zic3 [39] and Glis [38]. The numbers of publications that used the iPSC factors for iPSC induction are listed in
the second column. To quantify the performance of each method, all rankings of iPSC factors were summarized as the total score, while the total weighted score
further takes the prevalence of usage of an iPSC factor for cell reprogramming into consideration. The 3rd to 14th columns compares the prediction results of 12
methods. The numbers in red grids show the ranking of iPSC factors derived from each method. White grids mean the iPSC factors are not predicted as the top 20
TFs. The abbreviations of each method listed in the first row are described as follows. pTFBS_SuperEnh: enrichment analysis of predicted TFBSs in super-enhancers;
ChIP_SuperEnh: enrichment analysis of TFBSs identified by ChIP-seq/chip in super-enhancers; HubTF: hub TFs in Ly network of mESC; TopTF: top TFs in Ly network
of mESC; gLASSO: group LASSO integrating transcriptomes and TF binding information; GSO: GSO via L, o regularization model integrating bulk transcriptomes and
TF binding information; GSO_SuperEnh: GSO model integrating bulk transcriptomes, TF binding and super-enhancer information; GSO_sc: GSO model integrating
single-cell transcriptomes of cell reprogramming process and TF binding information; GSO_sc_SuperEnh: GSO model integrating single-cell transcriptomes of cell
reprogramming process, TF binding and super-enhancer information; GSO_sc_pCRISPR: GSO single-cell model integrating single-cell transcriptomes after pooled CRISPR

and TF binding information.

well as the advantages and disadvantages of different prediction
methods.

Enriched TFs in super-enhancers

First, we tested whether TFs with enriched binding sites in
super-enhancers were more likely to be master TFs, since super-
enhancers are frequently occupied by master TFs regulating
lineage-specific genes [30]. Within the regions of mESC super-
enhancers, putative TFBSs were predicted. However, this binding
site enrichment analysis had poor predictive powers on the
bounded master TFs (Figure 2 column pTFBS_SuperEnh, Sup-
plementary Table S2C). It may be because of the large genomic
regions of super-enhancers, as they are with average lengths of
dozens of thousands of base pairs and the predicted TFBSs are
usually of high false positives.

Then, we performed enrichment analysis on ChIP-seg/chip
binding sites within super-enhancers (see section Methods). It
gives a better prediction than the predicted TFBSs (Figure 2
column ChIP_SuperEnh). All of four Yamanaka factors ranked
in the top 20. Besides Yamanaka factors, one of SNEL factors
was also found to be enriched in super-enhancers. It indicates
that super-enhancers were indeed enriched with iPSC factors
binding when compared to random sequences. To summarize,
super-enhancer data could be useful for iPSC factor prediction,
provided that the quality of TFBS information is high.

When only super-enhancers and TFBS information were
used, all reported iPSC factors were ranked beyond the top
10 list (Figure 2 column ChIP_SuperEnh, Supplementary Table

S2D). Both the total score and total weighted score were lower
when compared to those of network-based methods, e.g. Mogrify
and CellNet. This is because TFBS information alone without
considering the target expression changes usually leads to an
overestimation of the regulatory effect of TFs to the genes they
bound to. Besides, limited to the availability of ChIP-seqg/chip
data, some iPSC factors were not being able to be analyzed
(Supplementary Table S1).

Hub TFs and top TFs in mESC network

Hub/top TFs of a transcriptional regulatory network are
commonly regarded as master TFs [24, 25]. Thus, identification
of hub/top TFs from constructed mESC network could be an
alternative approach for iPSC factor prediction. We tested these
two traditional methods for master TF prediction from a high-
quality transcription regulatory network of mESC inferred
through L, regularized sparse optimization method in our
previous study [23]. We call it L, network hereafter. Hub TFs
and top TFs of this network were ranked (Figure 2 column HubTF
and TopTF). These two methods showed similar predictive power
over iPSC factors. All four Yamanaka factors and two of the SNEL
factors were predicted as top 20 master TFs by both methods.
The total scores and total weighted scores were improved when
compared to enrichment analyses of TFBSs (Figure 2 column
ChIP_SuperEnh and pTFBS_SuperEnh), because L, network
has high quality under the consideration on the regulatory
consequence of TF binding by integrating transcriptomic
data [23].
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To evaluate the influence of network quality to iPSC factor
prediction, we compared the hub/top TFs of L, network and
those of two other mESC networks inferred using Ly, and L,
regularized sparse optimization methods in our previous study
[23], named Ly, network and L, network, respectively. Previous
validation using two independent sets of known regulatory con-
nections has shown that the quality of L, network is higher than
that of Ly, and L; network [23]. Comparing the hub/top TFs of
these three networks, a similar trend was observed on both total
scores and total weighted scores, both of which summarizes
the rankings of all iPSC factors, and the later further considers
the popularity of an iPSC factor using in cell reprogramming
(Supplementary Table S2E and S3F). Hub/top TFs from Lo, network
achieved a higher score than those from L, network and L,
network. It indicates that the quality of cell-specific networks
is crucial for master TF inference.

However, hub/top TFs may not be good enough for master
TF inference. Even though the prediction utilized a high-quality
network considering both target expression dependency and
TF binding, the results of hub/top TFs were not satisfactory.
As some irrelevant TFs, such as CTCF, may also be identified
as hub TFs or top TFs [20, 26]. Because cell fate conversion
is a process changing the expression status of a set of genes
(DEGs) from one cell type (donor cell) into that of another cell
type (target cell), the gene expressions of the donor cell should
be taken into consideration too. Besides, many hub/top TFs
may only control a similar target group that even when they
are considered together, it would still be possible not covering
all the genes needed in cell fate conversion. Therefore, many
genes in current cell fate conversions were not converted prop-
erly into the right expression states as those in the target cell
type [14, 28].

Group sparse optimization for master TF inference
from bulk and single-cell data

To improve master TF inference, we designed a new method
directly predicting master TFs and quantifying their regulatory
effects on downstream targets by using transcriptomes and
TF binding information (Figure 1). This method takes both the
donor cell and target cell expression profiles into considera-
tion. Firstly, it identifies DEGs between fibroblast (donor cell)
and mESC (target cell). In the cell fate conversion, all DEGs are
regarded as a group because most of them are regulated by
master TFs simultaneously. GSO was applied to find a small
number of master TFs out of 939 candidates that can control the
expression of all DEGs. It calculates the regulatory effect of these
TFs by considering the expression changes of the whole group
of DEGs between the donor cell and the target cell based on the
expression profiles of 939 candidate TFs (matrix A in Figure 1)
and DEGs (matrix B in Figure 1) in a number of transcriptome
samples. To obtain gene regulatory network specifically acti-
vated in target cells, these transcriptome data of TFs and DEGs
would be better if they were derived from perturbations in the
target cells. Moreover, group sparse penalty in the GSO model
promotes the number of selected TFs below a defined sparsity
level, for example, four out of all TFs. TF binding information was
also integrated to provide an initial guess (matrix X°) for solution
searching (see section Methods).

First, we tested our method using bulk transcriptomes.
Bulk transcriptome data from 245 perturbation experiments
on mESCs were curated, which were conducted by the same
research group [42-44]. Matrices A, B and X° were generated
with these bulk transcriptome data (see section Methods). Our

method successfully predicted all Yamanaka factors and three
of SNEL factors (Figure 2 column GSO) as part of the top 20
master TFs when the mentioned bulk transcriptome data and
TF binding information from ChIP-seq/chip were integrated (see
section Methods), while most of the Yamanaka factors were
ranked in the top 10. The Yamanaka and SNEL factors predicted
in our method also achieved a better ranking when compared to
these factors predicted in hub/top TFs (Figure 2 column HubTF
and TopTF). On top of that, the total score and total weighted
score were higher than those from the other two network-based
methods, Mogrify and CellNet. gLASSO failed to predict any of
the 13 standard iPSC factors (Figure 2 column gLASSO), although
it used the same data combination as that of GSO.

We also tested the performance of this method on single-
cell data. From Guo et al. [45], 912 single-cell transcriptomes
of fibroblasts (74 cells), mESCs (82 cells), iPSCs (65 cells)
and reprogramming processes (691 cells) were collected [45].
Then, matrices A, B and X° were generated with normalized
read counts from these 912 cells (see section Methods). GSO
achieved good results similar to that of using bulk transcriptome
data (Figure 2 column GSO_sc). However, results from bulk
transcriptomes preferred Yamanaka factor OSKM, while those
from single-cell data preferred iPSC factor SNEL. This is probably
due to the fact that these single-cell sequencing data were
generated from overexpressing of Yamanaka factors, and these
overexpressed RNAs lacks poly-A tails, they would not be quan-
tified by scRNA-seq. The underestimation of Yamanaka factors
expression in the infected cells by scRNA-seq might mislead the
relationship between these TF and their target genes, resulting
the underestimated ranking of Yamanaka factors. Thus, the total
weighted score considering the prevalence of usage of SNEL TFs
was much lower, since OSKM was still the most popular TF set
for cell reprogramming from fibroblast to iPSC.

Single-cell transcriptomes of reprogramming processes doc-
umented the necessary gene regulatory network in cell fate
conversion. Yet, for most cell types, such data is not available.
Moreover, due to the low reprogramming efficiency, only a small
fraction of the cell population obtained the target-cell-like gene
expression profile, while a majority of cells went through a
deviated path and differentiate into non-desirable cell types
[45]. The rest cells directing into other cell fate might interfere
with the network construction. Fortunately, perturbation exper-
iments on target cells, especially those which knock-down/out
or overexpress TFs, would reveal the importance of such TFs
in the target cell’s gene regulatory networks. Therefore, data
with pooled CRISPR (clustered regularly interspaced short palin-
dromic repeat) targeting TFs coupled with scRNA-seq (such as
CROP-seq [46] and Perturb-seq [47]) in target cells allows us
to obtain enough transcriptome data for master TF prediction,
while this pipeline can also be applied to any cell type. By using
such CROP-seq data in mESC collected from Yang et al. [48],
master TFs were predicted and compared with those predicted
from previously mentioned single-cell and bulk transcriptome
data (Figure 2 column GSO_sc_pCRISPR). The master TFs pre-
dicted from CROP-seq data were found to be different from those
predicted from scRNA-seq data of reprogramming process, while
they are more similar to those predicted from bulk transcrip-
tomes, as these bulk transcriptomes were also derived from gene
perturbation experiments on mESCs (Figure 2).

To test the reproducibility of our method and observe
whether the same result can be obtained by inputting data
with similar origins, predictions were run on different single-
cell transcriptome matrices of mESC generated from the
same treatments. Prediction results from two single-cell
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Figure 3. Performance of master TF prediction by GSO under different data input conditions assessed by total score. (A) Different quantity of ChIP-seq/chip data (0,50 and
100%) was randomly selected as data reduction and incorporated as the initial guess X° combined with bulk transcriptomes or single-cell transcriptome for GSO method.
(B) Different amount of transcriptome sample reduction was performed for each dataset. The abbreviations of each method listed in the first row are described as
follows. Bulk: bulk RNA sequencing; sc_reprogram_FC1: single-cell sequencing data from Fluidigm C1 platform generated from reprogramming processes; sc_pCRISPR:
GSO single-cell pooled CRISPR; sc_reprogram_10x: single-cell sequencing data from 10x genomics platform generated from reprogramming processes. (C) Performance
differences between different datasets for both single-cell and bulk cell transcriptomes as well as those from different cell types to assess the reproducibility and the
cell type specificity of GSO. (D) Performance comparison between different data sparsity level generated by random data reduction at 0, 25, 50, 75 and 100%.

transcriptome matrices were compared, which contain 5073
and 3855 cells respectively derived from repeated pooled CRISPR
experiments on naive mESC (GSM4227536 and GSM4227538
from Yang et al. [48]). Another two datasets, which were both
derived from OSK-mediated reprogramming process (GSE103221
from Guo et al. [45]) but detected by two different scRNA-seq
platforms- Fluidigm C1 and 10x Genomics respectively, were
also compared. Their total scores and TF rankings were similar,
but a higher single-cell sample number has been observed to
achieve a better performance (Figure 3C).

Contributions of various OMICs data types to the GSO
prediction

ChIP-seq/chip and Initial X

To assess the contributions of different OMICs data integrated
by the GSO model, we reran the predictions by reducing the
information or replacing with unrelated data for each data type.
First, initial guess matrix X° derived from TF binding information
was tested by replacing it with each of the following matrices:
(1) Xzero = 0, in which each element is zero, representing that
no TF binding information was utilized; (2) Xso%, representing
that randomly selected 50% of TF binding information (non-zero
elements) was utilized (see section Methods). When reduced TF
binding information from ChIP-seq/chip was integrated in GSO,
the total scores were found to drop notably. When TF binding
data was fully unitized, randomly reduced to 50% and fully
reduced, the total scores dropped from 91 to 48 and 0, respec-
tively, for the case of bulk transcription data; from 91 to 50 to 0,

respectively, for single-cell transcriptome of cell reprogramming
process derived from Fluidigm C1 platform; from 97 to 95 to O,
respectively, for single-cell transcriptome of cell reprogramming
process derived from 10x Genomics platform; from 93 to 57 to
30 for single-cell transcriptome obtained from pooled CRISPR
(Figure 3A). Second, we also tested other initial Xs without TF
binding information, but their prediction results were all poor
(Supplementary Table S10).

Transcriptome sparsity level

It is well-known that single-cell transcriptome matrix is highly
sparse due to missing data. The sparsity of single-cell tran-
scriptome matrices used in this study is all above 0.99, where
more than 99% of elements in the matrices are zeroes. To test
how sparsity level affects the prediction result, sparsity levels
of different single-cell datasets were artificially increased by
randomly reducing non-zero data quantity to 75, 50 and 25% of
the original single-cell transcriptome matrices. Surprisingly, the
artificial increasing of sparsity level only reduced the total score
slightly even when the data was reduced to 25% (Figure 3D).
Furthermore, to test whether decreasing sparsity level by impu-
tation methods inferring the missing gene expression values can
improve the prediction performance, we compared the results
from single-cell transcriptome matrix of normalized raw reads
and those from imputed matrices. Three imputation methods,
Knn-smooth2, Drimpute [49] and SAVER [50], were compared
(Figure 4). Yet none of the missing data imputations improved
the performance of master TF prediction. Instead, Knn-smooth
and DrIlmpute had even slightly reduced the prediction total
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score and total weighted score, while SAVER did not affect the
master TF prediction results (Supplementary Table S4A-F). It may
be because these methods relied on existing information to infer
missing data, and they did not provide additional information
but introduced false signals, which leaded to spurious gene
network interactions [51-53].

Cell type specificity of transcriptomes

As mentioned above, the cell-type-specific network information
constructed from transcriptomes is important for master TF
inference. Therefore, when we replaced the single-cell transcrip-
tome matrix with those from other cell types while remain
using mESC derived TFBS information, the resulting total scores
decreased as expected. When single-cell transcriptomes (3425
and 2795 cells in two repeated experiments, GSM4227537 and
GSM4227539) from primed mESC (a cell type very similar to naive
mESC but in a primed state) were used, the total score slightly
reduced to 88 for both primed mESC datasets. When the data
of reprogramming processes from fibroblast to retinal ganglion
cell-like neuron (a cell type very different from naive mESC) was
used, the total score has been decreased to 69, which is even
lower when we ranked TFs based on TF binding information
alone (total score 76) (Figure 3C). This demonstrated that gene
regulatory network is highly cell-type specific. The combination
of cell-type-specific OMICs data is important to the construction
of cell-type-specific network, as well as the prediction of master
TFs for a specific cell type. When data from different cell types
were mixed like the above example, connections in the network
would be disrupted, resulting in poor performance.

Transcriptome sample number

To assess how the change of transcriptome sample number
might affect the result of GSO, we artificially reduced the sam-
ple number of different datasets (numbers of samples were

randomly selected from each of the four sets of bulk/single-
cell transcriptomes), and then compared the prediction results
between different number of samples. Surprisingly, all types of
dataset achieved satisfactory result (total score around 90) when
the sample number reached 100 only, further increase of sample
number up to 65,068 did not resultin a notable raise in total score
(Figure 3B).

Super-enhancer region enriches the master TFs

Since super-enhancer regions were enriched with master TF
binding, we further tested whether this information could
improve the prediction. GSO method allows the incorporation
of super-enhancer information (see section Methods). Results
demonstrated that the incorporation of super-enhancer infor-
mation further raised the ranking of iPSC factors, thus both total
score and total weighted score were increased (Figure 2 column
GSO_SuperEnh, and Supplementary Table S2I and S2K).

Running time

The running time for one prediction by GSO is quite fast, which
is about 20 minutes by using Matlab R2020a on a personal
computer with i7-9700 CPU and 24 GB RAM. The number of cells
hardly affected the running time required. With the increase
of cell number from 25 to ~60 000 cells, the running time only
increased slightly from 20 to 22 minutes (Figure 5). This fast
running time can be explained by the state-of-the-art iterative
thresholding algorithm (ITA) applied to solve the GSO problem
[34], that consists of a gradient descent step of linear least-
squares and a group hard-thresholding step of the L,, penalty
alternatively. It was shown in [34] that the ITA has a fast linear
convergence rate and very low computational complexity (as
both steps in ITA have analytical formulas). Moreover, the major
part of computational cost of each gradient descent step is
(ATA)X, and the one of the group hard-thresholding step is H()
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(see section IHTA in Methods), both of which depends on the
dimension of variables (TFs) but rarely on the number of samples
(cells). The major part relevant to sample number is ATA. The
running time that it costed increased significantly as the number
of samples increased (Figure 5). However, it was calculated only
once in the whole algorithm and costed just several seconds.
Hence, the total running time did not increase much as the
number of samples increased.

Discussion

This study evaluated the efficiency and proficiency of different
data combinations and methods in predicting master TFs
during cell fate conversion. We introduced a new bioinformatics
method based on GSO technique that is able to integrate multiple
OMICs data and has superior performances when compared to
several state-of-the-art prediction methods, including CellNet
and Mogrify, by a semi-quantitative scoring system in the
case of conversion from mouse fibroblast to mESC. As this
conversion is the most well studied case so far and possess
abundant TFBS, expression and epigenetic information that can
be used as input data, while there are also numerous studies
discovering wet-lab proven master TFs for this conversion.
Therefore, the performance scoring system takes advantage of
these published and wet-lab validated master TFs and consider
them as the standard master TFs in mouse fibroblast to mESC
conversion. To assess and compare the efficiencies of our GSO
method and other methods, we developed a semi-quantitative
scoring system naming total score and total weighted score (see
section Methods). Prediction methods achieved a higher score
when more of these standard TFs were predicted in their top
20 master TF list, those TFs ranked higher, and a higher

number of publications used the respected TFs for the cell fate
conversion.

In brief, methods utilizing TFBS and super-enhancer infor-
mation alone made poor results: the one using TFBS information
based on predictions (Figure 2 column pTFBS_SuperEnh) even
got O total score and total weighted score while the one
using TFBS information derived from ChIP/ChIP-seq (Figure 2
column ChIP_SuperEnh) had the third least total score and
total weighted score. In comparison, methods utilizing gene
network information and traditional master TF identification
methods made better results (Figure 2 column HubTF and
TopTF). Method integrating gene network information and
better master TF identification method achieve even more
satisfactory results (Figure 2 column Mogrify). Surprisingly, the
method CellNet, despite of its integration of gene network
information and better master TF identification method, it
resulted with poor performance comparative to using ChIP/ChlIP-
seq and super-enhancer data alone (Figure 2 column CellNet).
Most importantly, our GSO methods, regardless of whether
super-enhancer information was integrated or scRNA-seq data
was used instead, managed to result notably high total and
total weighted scores when compared to any of the above
methods. Furthermore, after testing and running our method
with different data replacement, there are several key points: (i)
the integration of ChIP-seqg/chip data in form of initial X value is
important; (ii) different data to be integrated and utilized in our
method are suggested to be obtained from the same cell type; (iii)
this method has a high tolerance on single-cell transcriptome
data sparsity; (iv) our result is reproducible when the data were
substituted by different datasets from the same cell type.

From these results, it was also found that methods inte-
grating data with more OMICs levels properly will generally
result in better performance. Therefore, methods using one
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level of data type alone resulted relatively poor performance.
While methods integrating multiple OMICs levels logically
improves the conversion performance. In the process of master
TF inference in cell fate conversion, both network construction
and master TF prediction are important steps to achieve satis-
factory results. For network construction, CellNet implements
correlation-based method to infer cell-specific network from
transcriptomes of perturbation experiments in a certain cell
type. It incorporates TFBS information identified by ChIP-seq
to select a proper cutoff of TF-gene expression correlation.
However, correlation-based methods have been shown to have
low efficiency for gene regulatory network prediction regardless
of which cutoff is selected [17, 23]. That might be the reason
that CellNet has surprisingly unsatisfactory performance during
the prediction of TFs required for reprogramming fibroblasts
to iPSCs. Mogrify adopted an improved method for network
construction. It integrates protein-protein interactions (PPIs)
from STRING and transcriptional activity of predicted TFBSs
from MARA by FANTOM consortium. However, PPI networks
and predicted TFBSs are not cell-specific and have high false-
positive rates. Both CellNet and Mogrify rely on pre-existing
networks, new cell types whose gene regulatory networks have
not been analyzed might lack necessary information for further
master TF identification. Therefore, building a high-quality cell-
specific network for target cell of the cell reprogramming is
crucial for more accurate master TF prediction. This was also
supported by our test, in which hub/top TFs from mESC network
of high quality achieved a higher score than those from those
of relatively lower quality (see section Results). While during
the second step - master TF inference, when master TFs were
searched from the built network, TFs are usually weighted by
their targets in the network. Hub/top TFs, CellNet and Mogrify all
use similar strategies in this step. However, these strategies did
not quantitatively assess the expression dependency between
TFs and their targets. To summarize, a refined master TF
prediction method should improve the above drawbacks as
follows: (i) a better integration of data from multi-OMICs levels;
(ii) improving the inference of TF-gene regulatory relationships;
(iii) data utilized for gene regulatory network constructions
should be cell-specific; (iv) expression dependency between TFs
and their targets should be assessed. A new method addressing
the above areas was hence developed in this study.

Our method utilizes a group sparse optimization model:
the Ly, regularization model, in which an L, penalty is used
to characterize the simultaneous regulations of master TFs
to all DEGs (group structure) and to select a few master TFs
(sparse structure). L, regularization model is a combination of
the regression-based method and the group sparsity penalty
method, which minimizes the regression residual and the group
sparsity of variables simultaneously. Regression-based methods
have been shown to enjoy better performance than correlation-
based methods [17]; the Lo-type penalty is an exact measure
of the sparse structure and thus has a significantly stronger
sparsity promoting capability when compared to the relaxed L;-
type penalty [34, 54]. Consequently, the Lo regularization model
showed better performance when constructing cell-specific
network from transcriptomes of perturbation experiments
together with TF binding information in our previous study
[23]. Motivated by the benefits of regression-based method and
Lo-type penalty, this study utilized the GSO method (Lo-type
penalty) to infer master TFs for cell fate conversion, which
merges network construction and master TF prediction into
one step and showed better performance than gLASSO (L;-type
penalty).

The comparisons of mathematical theory between GSO (L,
regularization model) and gLASSO (L,; regularization model)
were summarized in two perspectives of consistency theory of
models and numerical theory of algorithms:

(i) Consistency theory of models. Both GSO and gLASSO are
mathematical models for real-life problems, and the global solu-
tions of both models are not the exact solution of real-life
problems. By definition, the L, norm is an exact measure of the
group sparsity, while the L, ; norm is a relaxation of the L, o norm,;
hence GSO (Eqg. (5) in section Methods) provides a more accurate
representation of group sparse structure than gLASSO. Moreover,
it was reported in [34, 54] that, contrasted with gLASSO, GSO
allows a weaker condition (RIP or REC) on matrix A (Figure 1)
to guarantee the perfect recovery and consistency theory. In a
word, GSO is a more accurate and stable model for group sparse
optimization problems than gLASSO.

(ii) Numerical theory of algorithms. Suffering from the non-
convexity of L,p norm, it is intractable to design algorithms
to find a global solution of GSO [55]; fortunately, several fast
iterative algorithms were designed to approach a local solution
of GSO [34, 56]. Alternatively, gLASSO inherits the benefit of
convexity of Lo, norm in designing fast algorithms to find a
global solution of the relaxed problem. In a word, fast algorithms
are applicable for approaching the local and global solutions
of GSO and gLASSO so as to approximate the solution of real-
life problems, respectively. Moreover, initial point is sensitive for
GSO algorithms but insensitive for gLASSO algorithms.

From the above comparisons, there is still no mathemati-
cal theory to identify the superiority of GSO or gLASSO; one
is a more accurate model, while another enjoys the benefit
of numerical algorithms for finding global solutions. Extensive
empirical studies revealed the significant advantages of GSO
(or Lo regularization model) in terms of model reliability, strong
sparsity promoting capability and achieving solution with bio-
logical sense; see, e.g. [23, 34, 54, 57, 58]. Particularly, when a
good initial point is provided, the GSO will achieve a high-quality
local solution of (Eq. 5), which could be even better than the
global solution of gLASSO. Therefore, by virtue of TF binding
information derived from ChIP-seqg/chip as a good initial guess,
we adopted GSO in this study because of its advantages in model
reliability and strong group sparsity promoting capability over
gLASSO. Comparison of numerical results between these two
models in the case of conversion from mouse fibroblast to mESC
was consistent with previous observation that GSO performed
better than gLASSO when the solution has high sparsity, since
cell fate conversion needs only a small number of TFs out of
hundreds to thousands of candidates.

In addition, our method does not require predefined gene
regulatory network. It utilizes the inherent cell-specific regula-
tory information hidden in the OMICs data, and directly infers
master TFs. Thus it is applicable to more cell types of clinical
potentials. It predicts master TFs that could control all DEGs
by taking all DEGs between donor cells and target cells as one
target group. It is also able to quantify the dependency between
master TFs and all DEGs that are needed to be changed from the
donor cells into the target cells. This method considered multiple
aspects thoroughly, thus shows better performance.

Furthermore, our method provides a more flexible platform
for master TFs prediction. It is able to integrate not only tran-
scriptome data and TF binding information but also other epi-
genetic information, which can provide cell-specific activities of
DNA regulatory elements. Multiple tests described above have
shown that the addition of each OMICs data type makes the
prediction result better. TF binding information could be derived
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from either ChIP-seq/chip of TFs or a combination of predicted
TFBS and epigenetic data, such as DNase-seq (DNase I hypersen-
sitive sites sequencing). Besides, super-enhancer regions identi-
fied from epigenetic data were found to be significantly enriched
with the binding of our predicted master TFs, when super-
enhancer information were further integrated, the total score
and total weighted score were increased, improving the per-
formance of master TF prediction when compared to utilizing
TFBSs alone. To test the importance of using TFBS information
as the initial guess X°, several test runs with completely and
partially abandoning TFBS information were performed. Gen-
erally, the reduction of TFBS information leaded to a notable
decrease in total score, suggesting that the integration of TFBS
information is crucial for accurate master TF inference using our
GSO method, and the absent of TFBS information resulted in ter-
rible performance (Figure 3A). This is consistent with results of
gene regulatory network construction in previous studies [17, 23],
where the accuracy of networks constructed from transcriptome
data alone was similar to those from random guessing. However,
integration of transcriptome data increased the total score of
master TF prediction from 76 to 91~ 97, which indicates the
contribution of transcriptome data by providing the cell-type-
specific gene regulatory information. The cell type specificity
of transcriptomic data utilized is also important, it is because
when the transcriptomic data was originated from a completely
different cell type, the total score dramatically reduced to 69,
which is even lower than that when the use of transcriptomic
data was absent.

Our method is also highly reproducible, since using data from
different sources always produce comparable results regardless
of sequencing technologies or platforms (total score ranging
from 91 to 97), as long as they are from the same cell type
(Figure 3C). More than that, our method has a relatively high tol-
erance on transcriptome sparsity level. Artificial data reductions
on different single-cell datasets were made, total scores were
found to suffer a slight reduction (less than 7.5% reduction) when
50% of transcriptome data points was randomly selected, and
a mild reduction (1-15% reduction) when 25% of transcriptome
data points was randomly selected (Figure 3D).

Thanks to the recent advancements in single-cell sequencing
technology, scRNA-seq can generate transcriptomes from thou-
sands of cells in one single experiment. DrivAER [59], a machine
learning method for gene set analysis on scRNA-seq data, is able
to detect driving TFs during cell fate conversion when it runs on
data derived from cell reprogramming process. However, as men-
tioned above, for most cell types, such data is not available since
corresponding cell fate conversion has not yet succeed. Other
than utilizing single-cell transcriptome data detected from cell
reprogramming process, single-cell transcriptome data from dif-
ferent perturbation experiments targeting individual TFs (pooled
CRISPR) can also provide vital TF-to-gene regulatory relationship
information in the target cell, where they can be implemented in
our method and achieve good results. Our results also indicate
that using scRNA-seq in one single experiment alone can gen-
erate sufficient transcriptome profiles for master TF inference,
thus reducing cost when compared with using bulk sequencing
technology. Although scRNA-seq transcriptomes suffers from
high data sparsity, our method has a high tolerance on data spar-
sity level. In addition, single-cell epigenetic technology, such as
single-cell assay of transposase accessible chromatin with high-
throughput sequencing (scATAC-seq), allows detection of open
chromatin regions of the same population of cells or even the
same single cells with scRNA-seq. There are existing methods
making an afford to integrate these single-cell multi-OMICs data,

yet they mainly focus on cell population analysis and suffer
greatly from high sparsity level [18, 60]. Our method has the
potential to make use of these data for master TF identification
with high tolerance on data sparsity level. When combined with
pooled CRISPR and single-cell multi-OMICs, our method could
also be applied to cell fate conversion between other cell types,
even if they are not well studied or do not have known gene
regulation information.

Methods
Enrichment analysis on TF binding in super-enhancers

Super-enhancers of mESCs were downloaded from dbSUPER
[31]. Putative TFBSs within super-enhancers were predicted by
MISP (https://bitbucket.org/hanfeisun/misp) with TFBS motifs
collected from JASPAR [61], UniPROBE [62] and CIS-BP [63]. Each
TFBS has a prediction score reported by MISP. To assess the
enrichment of TFBSs in super-enhancers, an accumulative score
(AS) of TF binding in all super-enhancers was calculated by:

ASenh — i max (sf“h) : )
i=1

where n is the total number of super-enhancers in a tissue/cell
type, and max(S{"*) is the maximum TFBS prediction score of
the TF within the i super-enhancer. To normalize the ASs of
different TFs, n intergenic sequences were randomly selected.
TFBSs in all random sequences were predicted. And then AS of
each TF in all random sequences were calculated. By sampling
n random sequences for m times, the average ASs of m sam-
plings were used to normalize the ASs of different TFs in super-
enhancers. This normalized accumulative score (NAS) quantifies
the enrichment of predicted TFBS in super-enhancers:

i max (Se7h)
NAS =1n =1 )]

5 (Bmax(s)) /m)

where max (Sirand]) is the maximum TFBS prediction score of the
TF within the i random sequence in the jth sampling.

NASs were also calculated for 66 TFs’ TFBS (including chro-
matin modifiers) identified by ChIP-seq/chip in mESC (Supple-
mentary Table S1). S and Sl.mnd’ were ChlIP-seq/chip fold enrich-
ment of TFBSs within super-enhancers and random sequences,
respectively. TFs were then ranked by NASs.

Hub TFs and top TFs

Hub TFs were ranked by the number of targets [24] in mESC-
specific networks, which was a directed network constructed by
combining transcriptomes of perturbation experiments and TF
binding data in our previous study [23]. Top TFs were ranked
according to the difference between their out-degree and in-
degree in the same networks, which is calculated by:

0-1

Sep = o1 @

where O is the out-degree and I is the in-degree [25].
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Bulk and single-cell transcriptome data processing

DEGs between mouse fibroblasts and mESCs were determined
by comparing their expression profiles, which were downloaded
from Gene Expression Omnibus (GEO) [64]. Mouse embryonic
fibroblast (MEF) samples included GSM1100519, GSM1100520,
GSM1100521, GSM1310500, GSM853462, GSM853463, GSM853464,
GSM1297612, GSM1297613 and GSM1297612; while mESC
samples included GSM1053554, GSM1197055, GSM1197056,
GSM1297603, GSM1297604, GSM1297605, GSM1168397, GSM1168
398 and GSM1168399. DEGs between the two cell types were
identified by Limma [65] with the cutoff of log2 fold change >1
or < —1 and adjust P-value <0.05.

Bulk transcriptome data of 245 perturbation experiments in
mESC were also collected from GEO (GSE16375 [42], GSE31381
[43], GSE26520 [44]). For each experiment, gene expression fold
changes between mESC (control) and treatment samples were
log2 transformed. Combining log2-transformed expression fold
change data of all experiments, profiles of TFs (939 TFs) formed
matrix A, and those of DEGs between fibroblasts and mESCs
formed matrix B (Figure 1). Both matrices contain data from the
245 experiments (245 rows).

Single-cell transcriptome data of mouse fibroblasts, mESCs,
iPSC and different time points of reprogramming processes
detected by Fluidigm C1 (912 cells) or 10x Genomics (65 068 cells)
were collected from GSE103221 [45]. Single-cell transcriptome
data of naive and primed mESC from pooled CRISPR of 25 TFs
followed by scRNA-seq were downloaded from GSE142451 [48].
Single-cell transcriptome data of direct induction of retinal
ganglion cell-like neurons were downloaded from GSE140128
[66]. For each dataset, normalized read counts of all genes were
downloaded and log2 transformed (log2(count+1)). Similar to
how we handled the bulk transcriptome data, log2 transformed
profiles of TFs in all cells formed matrix A, and those of DEGs
between fibroblasts and mESCs formed matrix B (Figure 1). Both
matrices contain data from all cells. How master TF predicted
will be described in the following sections.

Since missing data is a major problem with single-cell tran-
scriptome, to test whether the data imputation improves pre-
diction performance, imputation was conducted for normalized
read count matrix using three algorithms, Knn-smooth2 (https://
github.com/yanailab/knn-smoothing), Drimpute [49] and SAVER
[50], with default settings. Then matrices A and B were also
extracted from the imputed matrices of three algorithms accord-
ing to TF and DEG names needed for further prediction, respec-
tively. The influence of sparsity level on the master TF prediction
was tested by artificially increasing sparsity levels of differ-
ent single-cell transcriptome matrices, which is to reduce data
quantity to 75, 50 and 25%. In details, for each cell in a single-cell
transcriptome matrix, 75, 50 or 25% of genes whose expression is
non-zero were randomly selected and retained respectively, and
the rest of genes were forced set as 0. Then matrices A and B were
again extracted from the new matrices of increased sparsity for
further prediction.

To assess the effect of transcriptome sample number on the
result of master TF prediction, we calculated the total scores
for a series of sample numbers for bulk transcriptome and
each of single-cell transcriptome datasets (Figure 3B). Numbers
of samples/cells were randomly selected from each of the four
sets of bulk/single-cell transcriptomes, and formed new tran-
scriptome matrices. Matrices A and B were again extracted from
the new matrices of reduced sample/cell numbers. Then master
TFs were predicted using each new matrix, and the predic-
tion results between different numbers of samples/cells were

compared. Each experiment was repeat three times indepen-
dently. When the sample number was reduced to 0, only TF
binding information was used. TFs were ranked according to
the number of their targets as DEGs between mouse fibroblasts
and mESCs.

Group sparse optimization

As shown in Figure 1, regulatory relationship between TFs and
targets were formulated approximately by a linear system

B=AX+s, @)

where A € R™" denotes the expression data matrix of r TFs in
m bulk transcriptome studies or single cells, B € R™" denotes
the expression data matrix of n DEGs between mouse fibroblasts
and mESCs in m bulk transcriptome studies or single cells, ¢
denotes the matrix of noise and X € R™" denotes the regulation
matrix that describes the regulatory relationship between these
r TFs and n DEGs. Matrices A and B were derived from bulk
transcriptome data in perturbation experiments or single-cell
transcriptomes as described in the previous section.

With these matrices, we then proceed to the inference of
master TFs via the GSO method. The master TF inference is
aimed to find a small number of TFs targeting most of the
DEGs simultaneously. It can be described as an optimization
problem to find an X such that the difference between AX and B
is minimized with only a small number of selected TFs, whose
regulatory strength on DEGs (i.e. X;.) are nonzeros. Note that the
number of master TFs is measured by the L,, norm of X, which
is defined by the number of non-zeros rows of X (namely, the
group sparsity of X, see Figure 1). Hence master TF inference can
be formulated by a (nonconvex) group sparse optimization (GSO)
problem, that minimizes the regression residual and the group
sparse penalty simultaneously:

miny [|AX — BJ|Z + Al X2, ()

where the Frobenius norm of X is defined by || X[ := ,/> 1, Z}leﬁj,
[X|l,0 is the number of non-zeros rows, and » > 0 is the
regularization parameter providing a trade-off between accuracy
of regression and group sparsity of variables. Note that the Ly,
norm handles each row of X (regulatory relationships between
one TF and all DEGs) as one group. Hence, by introducing the
group sparse penalty, GSO selects the groups that quantify the
regulatory strength of master TFs to all targeted DEGs. It is worth
mentioning that gLASSO [35] is a well-known convex relaxation
of GSO, which adopts an Ly; norm (i.e. [X[y; = >i,IIXi.]) as
the group sparsity promoting penalty instead of the L, norm
in the problem (Eq. 5). The comparisons of mathematical theory
between GSO and gLASSO were discussed in section Discussion.

Algorithms for solving GSO and gLASSO

In this study, we applied the iterative thresholding algorithms
to solve both GSO (Eqg. 5) and gLASSO. All experiments were
performed with Matlab R2020a on personal desktop (Intel(R)
Core(TM) i7-9700 CPU @ 3.00GHz). An R package with the same
functions is also available (in R version 4.0.2), which requires
packages ‘data.table’, ‘stringr’, ‘doParallel’, ‘foreach’ and ‘paral-
lel’. Both codes are deposited in the GSO homepage and GitHub
(see section Data Availability).
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Iterative thresholding algorithms are one type of the most
popular optimization algorithms for sparse optimization [34, 56,
67]. It has a fast convergence rate (at a linear convergence rate)
and is of very low computational complexity (having analyt-
ical formulae at each iteration) [34]. Benefitting from its fast
computing, simple formulation and low storage requirement, it
is applicable and effective even for large-scale problems. Uti-
lizing iterative thresholding algorithms to solve GSO has been
investigated in a uniform framework of the proximal gradient
method in our previous work [34]. In particular, the iterative hard
thresholding algorithm (IHTA) [57] was proposed to solve GSO
(Eq. 5), while the iterative soft thresholding algorithm (ISTA) was
introduced [67] to solve gLASSO, which were formally described
as follows.

IHTA

Set the step size v = 1/(2||A[?), start with an initial matrix X° €
R™" and generate a sequence {X*} C R"™" via the iteration:

X1 =H (X —vAT (AX* - b)), ©)
where H(') is the hard group thresholding operator, defined by

Xi’_, if HX‘H > \/2”)\.,

(HX)),. = [ 0, otherwise. v)

ISTA

Set the step size v = 1/(2||A[?), start with an initial matrix X° €
R™" and generate a sequence {X*} € R"™" via the iteration:

X1 =5 (X* - vAT (AX* - b)) , ®)

where S(-) is the soft group thresholding operator, defined by

_ _ur ) . )
(5(0), = [(1 )X I K] =, o
' 0, otherwise.

Parameter update scheme

Theregularization parameter 2 plays an important role in adjust-
ing a tradeoff between the fidelity of linear system and the group
sparsity of the solution. After pre-setting K (i.e. the number of
master TFs to be searched), we designed a dynamic scheme to
update parameter A such that an approximate solution within
a given group sparsity level K of problem (Eq. 5) is obtained.
The principle of the dynamic parameter updating scheme is
as follows. Because both IHTA and ISTA include a thresholding
operator, in which each group of variables is updated to zeros
if its norm is smaller than a given threshold. Then, by virtue
of the thresholding operator, parameter A can be dynamically
determined via the consideration of the pre-defined group spar-
sity level. This process dynamically sets the value of threshold
as the norm of the (K+1)™ most dominant row of the iterate
such that only K master TFs of variables are selected while the
other groups are vanishing. In particular, we denote Z* := X* —
VAT(AX® —b) and Ry: =(K + 1) largest value of {||Z |}, and set the

dynamic update scheme for IHTA and ISTA respectively by

A(H) = 2RT% andA(S) = %. (10)

TF scoring for GSO, gLASSO

To score and rank the master TFs reported by GSO and gLASSO,
we selected a series of group sparsity level K from 1 to 20 and
ran one GSO (or gLASSO) for each K. The group sparsity level K is
the number of rows in matrix X that are non-zero, which is the
number of selected master TFs, since each row is the regulatory
coefficients of one TF to all DEGs (Figure 1). For each TF, we used
Kmin to denote the smallest value of K when this TF is selected
as master TF. Due to the principle that GSO (or gLASSO) selects
the K most important TFs when the group sparsity is set as
K, we assumed that TFs selected by GSO (or gLASSO) are more
important when K is smaller, so a TF got a higher score if its Kmin
was smaller. Therefore, the score of each TF selected by GSO (or
gLASSO) is defined by

—
Kmm

S — ——, if this TF is selected in any GSO trial, (1)
€= 0, if it is not selected in all GSO trials.

Please refer to Supplementary Table S3B for more details.

Integration of TF binding information and
super-enhancer regions

TF binding information was transformed into a matrix X° that
served as an initial guess to guide the approximation to the
solution. TFBSs within each gene promoter (from —10 to +10
kbp of gene transcription start sites) were derived from ChIP-
seg/chip data of the target cell mESCs as described in [23].
For TF i and gene j, if binding site of TF i is present at the
promoter of gene j, X% is assigned as the Pearson correlation
coefficient (PCC) of the expression profiles of TF i (A.;) and gene
j (B.j) across all samples or cells; otherwise, X?J is assigned as 0.
When epigenetic information was incorporated, super-enhancer
regions were used to filter the TFBSs. When a TFBS is within
super-enhancer regions, ng defined by this TFBS was assigned
as PCC of the corresponding TF and gene; otherwise, it was reset
as 0.

Other initial guess matrices were also generated to test
the influence of different initial points to the final prediction
results:

(1) Xzero := 0, where each element in the matrix is zero, repre-
senting that no TF binding information was utilized;

(2) Xso%, representing randomly selected 50% of TF binding
information from the original X°;

(3) Xone := 1, where each element in the matrix is one, assum-
ing that all TFs are regulating all genes;

(4) Xcaussian, Where each element is randomly generated from
Gaussian distribution,;

(5) Xuniform, Where each element is generated from uniform
distribution.

(6) Xregression = ATA)_lATB, which is the solution of linear
regression;

(7) Xpcc: PCCs between TFs and genes, that is

cov (A.;,B.))

(Xpce)ij =
oA i OB J

(12)
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where o denotes the standard deviation.

Mogrify and CellNet

Prediction of Mogrify was performed for the conversion between
‘fibroblast’ and ‘embryonic stem cell lines’. Results were directly
downloaded from http://www.mogrify.net/. Similar to our
assumption, TFs selected by Mogrify are assumed to be more
important when the total number of selected TFs is smaller.
Thus, we chose the number of TFs from 5 to 20 (below 5 is
not permitted by Mogrify) and ran Mogrify. Predicted TFs were
ranked by the same scoring mechanism as Sg (Supplementary
Table S3A). CellNet prediction was done with the transcriptomes
of MEFs and mESCs mentioned in the preceding section using
the CellNet online tool (http://cellnet.hms.harvard.edu/). Top 20
TFs were recorded.

Comparison of different approaches

To quantify the efficiencies of different methods, a total score
was calculated for each method to summarize the ranking of all
iPSC factors:

20
St=> (21-R), (13)
i=1
whereifrom 1 to 20 represents the top 20 TFs predicted as master
TFs by each method, R; is equal to the rank of TF i if TF i has
been used to induce iPSC (standard TFs) and R; is equal to 21
otherwise. This scoring system allows the ranking of standard
iPSC TFs to be quantified and summed up, so that the more
standard factors, the higher their ranking, the higher the total
score. It considers only the existence and ranking of standard
TFs in the predicted top 20 TF list, so the number 21 was used to
make standard iPSC TFs ranking after 20 score 0.

To take the popularity of a TF for cell fate conversion into
consideration, TFs with the ability to induce iPSCs were ranked
according to the number of original PubMed publications that
have used them for iPSC induction. A total weighted score was
calculated for each method:

20
Stw = » (10 -1)(21-Ry), (14)

i=1

where 1; is the rank of the standard TF i in a descending order list
ranking the number of publications each standard TF has been
used in wet lab iPSC inductions. Compared to the above scoring
method, this method in additionally considered the popularity
the standard TFs emerged in the prediction results. Similarly, the
number 10 was used, since only 9 out of these 13 validated TFs
were being predicted by all tested methods. It makes sure that
the more publications using the standard iPSC TFs, the higher
their scores.
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Key Points

® This study introduces a novel computational method
predicting master transcription factors in cell type
conversion based on group sparse optimization tech-
nique and integration of multi-OMICs, which can be
applicable to both single-cell and bulk OMICs data
with high tolerance on data sparsity level.

® When it is compared with the other state-of-the-

art prediction methods by a scoring system cross-

referencing published and validated master TFs, it

demonstrated superior performance.

This method facilitates fast identification of key reg-

ulators, in hope of increasing successful cell identity

conversion rates and reducing costs from experimen-

tal trials.
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