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Abstract. In this paper, we study the convergence of the Newton-type methods for solving the square

inverse singular value problem with possible multiple and zero singular values. Comparing with other

known results, positivity assumption of the given singular values is removed. Under the nonsingularity

assumption in terms of the (relative) generalized Jacobian matrices, quadratic/suplinear convergence

properties (in the root-convergence sense) are proved. Moreover, numerical experiments are given in

the last section to demonstrate our theoretic results.
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1 Introduction

The inverse singular value problem (ISVP) arises in different applications such as the determination

of mass distributions, orbital mechanics, irrigation theory, computed tomography, circuit theory, etc.

[13, 15, 17, 18, 19, 21, 23, 29, 30, 33]. In the present paper, we consider the following special kind

of ISVP. Let p and q be two positive integers. Let Rp denote the p-dimensional Euclidean space and

Rp×q be the set of all real p× q matrices. Let m and n be two positive integers such that m ≥ n. Let
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{Ai}ni=0 ⊂ Rm×n. Given c = (c1, c2, . . . , cn)
T ∈ Rn, we define

A(c) := A0 +
n∑

i=1

ciAi (1.1)

and denote its singular values by {σi(c)}ni=1 with the order σ1(c) ≥ σ2(c) ≥ · · · ≥ σn(c) ≥ 0. The

ISVP considered here is, for n given real numbers {σ∗
i }ni=1 ordering with

σ∗
1 ≥ σ∗

2 ≥ · · · ≥ σ∗
n ≥ 0,

to find a vector c∗ ∈ Rn such that {σ∗
i }ni=1 are exactly the singular values of A(c∗), i.e.,

σi(c
∗) = σ∗

i , for each i = 1, 2, . . . , n. (1.2)

The vector c∗ is called a solution of the ISVP (1.2). This type of ISVP was originally proposed by

Chu [5] in 1992 and was further studied in [2, 3, 5, 16, 27, 31]. In the case when m = n, we call

the problem is square. Obviously, if {Ai}ni=0 are symmetric, the square inverse eigenvalue problem

is reduced to the inverse eigenvalue problem (IEP) which arises in a variety of applications and was

studied extensively in [1, 4, 6, 7, 11, 25, 32].

Even though the solvability issue for the ISVP (1.2) is very complicated, some numerical algorithms

for solving (1.2) (and so the square inverse singular value problems) have still been developed [2, 3,

5, 16, 27, 31]. In general, these numerical methods can be distinguished into two classes. One is

the continuous method which consists of solving an ordinary differential obtained from an explicit

calculation of the projected gradient of a certain objective function (cf.[5]). The other kind of method

that we are interested in below is the iterative methods. Define the function f : Rn → Rn by

f(c) := (σ1(c)− σ∗
1 , σ2(c)− σ∗

2 , . . . , σn(c)− σ∗
n)

T , for any c ∈ Rn. (1.3)

Then, as noted in [2, 3, 5, 16, 27, 31], solving the ISVP (1.2) is equivalent to finding a solution c∗ ∈ Rn

of the nonlinear equation f(c) = 0. Note that, in the case when the given singular values are distinct

and positive, i.e.,

σ∗
1 > σ∗

2 > · · · > σ∗
n > 0, (1.4)

the singular vectors {ui(c)}ni=1 and {vi(c)}ni=1 are continuous with respect to c around c∗. Moreover,

there exists a neighborhood of c∗ where the function f is differentiable around the solution c∗ (cf. [3]).

Thus, in this case, one can certainly apply Newton’s method for solving the nonlinear equation f(c) = 0

to produce Newton’s method for solving ISVP (1.2). However, Newton’s method for the ISVP (1.2)

requires solving a complete singular value problem for the matrix A(c) at each outer iteration. This

sometimes makes it inefficient from the viewpoint of practical calculations especially when the problem

size is large. Therefore, Chu designed in [5] a Newton-type method for solving the ISVP (1.2) which

requires computing approximate singular vectors instead of singular vectors at each iteration. Under

the assumption that the given singular values {σ∗
i }ni=1 are distinct and positive, the Newton-type

method was proved in [2] to be quadratically convergent (in the root-convergence sense). To alleviate

the over-solving problem, Bai et al designed in [3] an inexact version of the Newton-type method

for the distinct and positive case where the approximate Jacobian equation was solved inexactly by

adopting a suitable stopping criteria. Also under the assumption (1.4), a convergence analysis for

the inexact Newton-type method was presented in that paper and the superlinear convergence was

proved. On the other hand, motivated by the Ulm-like Cayley transform method introduced in [26]
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for solving the IEP, Vong, Bai, and Jin presented in [31] a Ulm-like method for the ISVP. Again under

the assumption (1.4), they showed that the proposed method converged at least quadratically.

As mentioned above, there are some works on the formation and convergence analysis of numerical

methods for solving the ISVP (1.2). However, to our knowledge, distinct and positive assumption is

always assumed for the given singular values among those works1. In the case when multiple and/or

zero singular values are present, that is, without loss of generality, {σ∗
i }ni=1 satisfies that

σ∗
1 = · · · = σ∗

s > σ∗
s+1 · · · > σ∗

n−t > σ∗
n−t+1 = . . . = σ∗

n = 0, (1.5)

solving the ISVP (1.2) becomes harder and the techniques for the distinct and positive case could

no longer work as the function f may be not analytic around c∗ and the singular vectors may be

not continuous around c∗. As mentioned in [5], the appearance of zero singular values is especially

challenging since zero singular values indicate rank deficiency and, to find a lower rank matrix in the

generic affine subspace:

A(c) := {A(c)|c ∈ Rn}

is intuitively a quite difficult problem.

The purpose of this paper is trying to studying the numerical solutions of the square inverse sin-

gular value problem (i.e., the ISVP (1.2) in the case when m = n) with multiple and/or zero singular

values given by (1.5). By modifying the Newton-type method in [2], a (exact) Newton-type method

for solving the square inverse singular value problem with assumption (1.5) is proposed, and the con-

vergence issue of the proposed Newton-type method is studied. Under the nonsingularity assumption

on the (relative) generalized Jacobian matrices at the solution c∗ (which is used by Shen et al in [26]),

we show that the sequence {ck} generated by the proposed method converges quadratically to c∗

even when multiple and/or zero singular values are presented. Moreover, to alleviate the over-solving

problem, an inexact version of the proposed method is also designed here where the approximate

Jacobian equation is solved inexactly by adopting a suitable stopping criteria. In particular, the main

results of this paper improve/extend partially the corresponding ones of [2] and [3] in the case when

m = n. Finally, some numerical experiments are presented to illustrate the theoretical results in the

last section.

2 Preliminaries

Let B(x, δ) be the open ball in Rp with center x ∈ Rp and radius δ > 0. Let S(p) and O(p) denote

respectively the sets of symmetric and orthogonal matrices in Rp×p. Let D(n) be the set of diagonal

matrices in Rp×p with increasing diagonal entries. Let I denote an identity matrix. Let ∥ · ∥ be the

Euclidean vector norm or its induced matrix norm, and let ∥ · ∥F denote the Frobenius norm. Then,

∥A∥ ≤ ∥A∥F ≤ √
q ∥A∥, for each A ∈ Rp×q. (2.1)

The symbol Diag(a1, . . ., an) denotes a diagonal matrix with a1, . . ., an being its diagonal elements

and diag(M) := (m11, . . . , mnn)
T denotes a vector containing the diagonal elements of an n × n

1An exact/inexact Newton-type method was proposed in [27] for solving the ISVP (1.2) with the multiple

but positive singular values, and it’s quadratic/superlinear convergence was claimed there. However, as

explained in the conclusion section, there is a fatal gap in the proof for the main theorem there (i.e.,[27,

Theorem 3.1].
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matrix M := (mij). Let {σ∗
i }ni=1 be the given singular values satisfying (1.5). Write

σ∗ := (σ∗
1 , . . . , σ

∗
n)

T and Σ∗ := Diag(σ∗
1 , . . . , σ

∗
n) ∈ Rn×n. (2.2)

Let c ∈ Rn and A(c) be defined by (1.1). Let {σi(c)}ni=1 stand for the singular values of A(c) with

the order σ1(c) ≥ σ2(c) ≥ · · · ≥ σn(c) ≥ 0. Write

Σ(c) := Diag(σ1(c), . . . , σn(c)) ∈ Rn×n.

Define

W(c) := {[U(c), V (c)] | U(c)TA(c)V (c) = Σ(c), U(c) and V (c) ∈ O(n)}.

As in [31], we ignore the choice of possible sign for [U(c), V (c)]. For each [U(c), V (c)] ∈ W(c), we

write

U(c) := [U (1)(c), U (2)(c), U (3)(c)] and V (c) := [V (1)(c), V (2)(c), V (3)(c)]

where U (1)(c), V (1)(c) ∈ Rn×s, and U (3)(c), V (3)(c) ∈ Rn×t. Throughout this paper, we suppose

that c∗ is a solution of the square inverse singular value problem. For i = 1 and i = 3, define

ΠU,i = U (i)(c∗)U (i)(c∗)T and ΠV,i = V (i)(c∗)V (i)(c∗)T . (2.3)

We first present some auxiliary lemmas. In particular, Lemma 2.1 gives a perturbation bound

for the inverse which is known in [12, pp.58–59]; Lemma 2.2 is a direct consequence of the Cholesky

factorization (cf. [11, Lemma 3.1]); while Lemmas 2.3 and 2.4 have been presented respectively in [2,

Lemma 2] and [25, Lemma 4.1].

Lemma 2.1. Let A, B ∈ Rp×p. Assume that B is nonsingular and ∥B−1∥ · ∥A−B∥ < 1. Then A is

nonsingular and moreover

∥A−1∥ ≤ ∥B−1∥
1− ∥B−1∥ · ∥A−B∥

.

Lemma 2.2. Let M ∈ Rp×q where p ≥ q. Let W = (wij) be a q×q nonsingular upper triangle matrix

such that w11 > 0 and WTW = I −MTM . Then there exist two numbers ϵ ∈ (0, 1) and α ∈ (0,+∞)

such that the following implication holds:

∥M∥ ≤ ϵ =⇒ ∥I −W∥ ≤ α∥M∥2.

Lemma 2.3. There exists a constant α ∈ (0,+∞) such that for any c, c̄ ∈ Rn,

∥A(c)−A(c̄)∥ ≤ α∥c− c̄∥.

Lemma 2.4. Suppose that Â ∈ S(n). Then there exist positive constants β and κ such that

min
Q̂∈O(n), Q̂T ÂQ̂∈D(n)

∥Q−Q̂∥ ≤ β∥A−Â∥, whenever A ∈ S(n), Q ∈ O(n), QTAQ ∈ D(n), ∥A−Â∥ ≤ κ.

The following lemma given in [24, Lemma 2.5] is also needed.

Lemma 2.5. Let Z ∈ Rn×n. Suppose that the skew-symmetric matrices H, K ∈ Rn×n satisfy

HΣ∗ − Σ∗K = Z.
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Then we have

[H]ij =
[Z]ij
σ∗
j

, n− t+ 1 ≤ i ≤ n, 1 ≤ j ≤ n− t,

[K]ij = − [Z]ij
σ∗
i

, 1 ≤ i ≤ n− t, n− t+ 1 ≤ j ≤ n,

[H]ij =
1

(σ∗
j )

2 − (σ∗
i )

2

(
σ∗
j [Z]ij + σ∗

i [Z]ji
)
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j,

[K]ij =
1

(σ∗
j )

2 − (σ∗
i )

2

(
σ∗
j [Z]ji + σ∗

i [Z]ij
)
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j.

The following two lemmas can also been found in [24, Lemma 2.6] and [24, Lemma 2.7]. Re-

call that ΠU,i and ΠV,i are defined by (2.3) for i = 1, 3. Let U := [U (1), U (2), U (3)] and V :=

[V (1), V (2), V (3)] ∈ O(n) where U (1), V (1) ∈ Rn×s and U (3), U (3) ∈ Rn×t. We form the QR

factorization of ΠU,iU
(i) and ΠV,iV

(i) for i = 1 and i = 3:

ΠU,iU
(i) = Ũ (i)(c∗)R

(i)
U and ΠV,iV

(i) = Ṽ (i)(c∗)R
(i)
V ,

where R
(i)
U , R

(i)
V are nonsingular upper triangular matrices, and Ũ (i)(c∗), Ṽ (i)(c∗) are matrices whose

columns are orthonormal. Let

Ũ(c∗) := [Ũ (1)(c∗), U (2)(c∗), Ũ (3)(c∗)] and Ṽ (c∗) := [Ṽ (1)(c∗), V (2)(c∗), Ṽ (3)(c∗)].

Clearly, [Ũ(c∗) Ṽ (c∗)] ∈ W(c∗). Suppose that the skew-symmetric matrices X̃, Ỹ ∈ Rn×n satisfy

eX̃ = UT Ũ(c∗) and eỸ = V T Ṽ (c∗). (2.4)

Define the error matrices EU and EV :

EU := [E
(1)
U , E

(2)
U , E

(3)
U ] and EV := [E

(1)
V , E

(2)
V , E

(3)
V ], (2.5)

where

E
(i)
U := (I −ΠU,i)U

(i) and E
(i)
V := (I −ΠV,i)V

(i), i = 1, 3,

and

E
(2)
U := U (2) − U (2)(c∗) and E

(2)
V := V (2) − V (2)(c∗). (2.6)

Finally, for any matrix M ∈ Rn×n, we use M [s]U and M [t]L to denote respectively the s× s upper left
and t× t lower right blocks of the matrix M .

Lemma 2.6. There exist two numbers δ ∈ (0, 1) and γ ∈ [1,+∞) such that for any c ∈ B(c∗, δ)

and [U(c), V (c)] ∈ W(c) , the following assertions hold:

(i) ∥U (2)(c)− U (2)(c∗)∥ ≤ γ∥c− c∗∥ and ∥(I −ΠU,i)U
(i)(c)∥ ≤ γ∥c− c∗∥ for i = 1, 3;

(ii) ∥V (2)(c)− V (2)(c∗)∥ ≤ γ∥c− c∗∥ and ∥(I −ΠV,i)V
(i)(c)∥ ≤ γ∥c− c∗∥ for i = 1, 3.

Lemma 2.7. There exist two numbers δ ∈ (0, 1) and γ ∈ [1,+∞) such that

(i) for any matrix U ∈ O(n) with ∥EU∥ < δ , the skew-symmetric matrix X̃ defined by (2.4)

satisfies

∥X̃∥F ≤ γ∥EU∥, ∥X̃ [s]U ∥F ≤ γ∥EU∥2 and ∥X̃ [t]L∥F ≤ γ∥EU∥2
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(ii) for any matrix V ∈ O(n) with ∥EV ∥ < δ, the skew-symmetric matrix Ỹ defined by (2.4) satisfies

∥Ỹ ∥F ≤ γ∥EV ∥, ∥Ỹ [s]U ∥F ≤ γ∥EV ∥2 and ∥Ỹ [t]L∥F ≤ γ∥EV ∥2.

Now we present the definitions and some properties of the B-differential Jacobian, the generalized

Jacobian and the relative generalized Jacobian. For this, let g : Rp → Rq be a locally Lipschitz

continuous function. Let g′ be the Fréchet derivative of g whenever it exists and Dg be the set of

differentiable points of g. Recall from [8, 22] that the B-differential Jacobian of g at x ∈ Rp is defined

by

∂Bg(x) := {J ∈ Rq×p | J = lim
xk→x

g′(xk), xk ∈ Dg}.

Consider the composite nonsmooth function:

g := φ ◦ ψ, (2.7)

where φ : Rl → Rq is nonsmooth but of special structure and ψ : Rp → Rl is continuously differen-

tiable. Let S be a subset of Rn and clS denote the closure of S. The generalized Jacobian ∂Qg(·) and
relative generalized Jacobian ∂Q|Sg(·) at x ∈ Rn, which were introduced respectively in [20] and [28],

are defined as follows:

∂Qg(x) := ∂B(φ(ψ(x)))ψ
′(x);

∂Q|Sg(x) := {J | J is a limit of Gk ∈ ∂Qg(yk), yk ∈ S, yk → x}.

The following lemma is known in [27, Proposition 2.1].

Lemma 2.8. Let x̄ ∈ Rp and let S be a subset of Rp. Let g be defined by (2.7). Then ∂Bg(x̄) and

∂Qg(x̄) are nonempty and compact, and so is ∂Q|Sg(x̄) if x̄ ∈ clS.

In the remainder of the present paper, let

S := {c ∈ Rn | A(c) has positive and distinct singular values}.

For any matrix M ∈ Rn×n, we use {σi(M)}ni=1 to denote the singular values of M with σ1(M) ≥
. . . ≥ σn(M) ≥ 0. Define the operator σ : Rn×n −→ Rn by

σ(M) := (σ1(M), . . . , σn(M))T , for any M ∈ Rn×n. (2.8)

Recall that the operators A and f are defined by (1.1) and (1.3) respectively. Then

f = σ ◦A− σ∗.

Thus we have the following two lemmas. Lemma 2.9, which has been proved in [27], gives the B-

differential Jacobian, generalized Jacobian, and relative generalized Jacobian of f at c. While Lemma

2.10, which is a direct consequence of [27, Lemma 2.1], gives a perturbation bound for the inverses of

B-differential Jacobian, the generalized Jacobian and the relative generalized Jacobian.

Lemma 2.9. Let f be defined by (1.3). Then we have the following assertions:

(i) If c ∈ Rn such that σn(c) > 0, then ∂Qf(c) = {J | [J ]ij = ui(c)
TAjvi(c), [U(c), V (c)] ∈

W(c)}.

(ii) If c ∈ S, then f is continuously differentiable at c and moreover ∂Bf(c) = ∂Qf(c) = {f ′(c)};
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(iii) If c ∈ clS, then ∂Q|Sf(c) = {J | J = lim
k→+∞

f ′(yk) with {yk} ⊂ S and yk → c}.

Lemma 2.10. Let c∗ ∈ Rn such that the matrix A(c∗) has singular values given by (1.5). Suppose

that each J ∈ ∂Q|Sf(c
∗) (resp. each J ∈ ∂Bf(c

∗), each J ∈ ∂Qf(c
∗)) is nonsingular. Then there exist

two numbers δ ∈ (0, 1) and γ ∈ [1, +∞) such that for any c ∈ B(c∗, δ),

sup
J∈∂Q|S f(c)

∥J−1∥(resp. sup
J∈∂Bf(c)

∥J−1∥, sup
J∈∂Qf(c)

∥J−1∥
)
≤ γ, (2.9)

where we adopt the convention that sup∅ = −∞.

3 The Newton-type method and convergence analysis

In this section, we begin with the (exact) Newton-type method for solving the square inverse singular

value problems with the singular values given by (1.5). For the original idea of the Newton-type

method, one may refer to [2, 5]. Clearly, in the case when t = 0, the method presented below is

reduced to the Newton-type method proposed in [27] (with m = n) for the multiple but positive case.

Algorithm 1. the Newton-type method

1. Given c0 ∈ Rn, compute the singular values {σi(c0)}ni=1, the orthonormal left singular vectors

{ui(c
0)}mi=1 and right singular vectors {vi(c

0)}ni=1 of A(c0). Write

U0 := [u0
1, . . . ,u

0
m] = [u1(c

0), . . . ,um(c0)],

V0 := [v0
1, . . . ,v

0
n] = [v1(c

0), . . . ,vn(c
0)].

2. For k = 0, 1, 2, . . . until convergence, do:

(a) Form the approximate Jacobian matrix Jk and the vector bk:

[Jk]ij := (uk
i )

TAjv
k
i , 1 ≤ i, j ≤ n; (3.1)

[bk]i := (uk
i )

TA0v
k
i , 1 ≤ i ≤ n. (3.2)

(b) Compute the vector ck+1 by

Jkc
k+1 = σ∗ − bk. (3.3)

(c) Form the matrix Wk := UT
k A(c

k+1)Vk.
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(d) Calculate the skew-symmetric matrices Xk and Yk:

[Xk]ij := 0, 1 ≤ i, j ≤ s or n− t+ 1 ≤ i, j ≤ n,

[Xk]ij := −[Xk]ji =
[Wk]ij
σ∗
j

, n− t+ 1 ≤ i ≤ n, 1 ≤ j ≤ n− t,

[Xk]ij := −[Xk]ji =
σ∗
i [Wk]ji + σ∗

j [Wk]ij

(σ∗
j )

2 − (σ∗
i )

2
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j,

[Yk]ij := 0, n− t+ 1 ≤ i, j ≤ n,

[Yk]ij := −[Yk]ji = − [Wk]ij
σ∗
i

, 1 ≤ i, j ≤ s, i > j,

[Yk]ij := −[Yk]ji = − [Wk]ij
σ∗
i

, n− t+ 1 ≤ j ≤ n, 1 ≤ i ≤ n− t,

[Yk]ij := −[Yk]ji =
σ∗
i [Wk]ij + σ∗

j [Wk]ji

(σ∗
j )

2 − (σ∗
i )

2
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j.

(e) Compute Uk+1 := [uk+1
1 , . . . ,uk+1

n ] and Vk+1 := [vk+1
1 , . . . ,vk+1

n ] by solving(
I +

1

2
Xk

)
UT
k+1 =

(
I − 1

2
Xk

)
UT
k (3.4)

and (
I +

1

2
Yk

)
V T
k+1 =

(
I − 1

2
Yk

)
V T
k . (3.5)

Now we present a convergence analysis for the Newton-type method. Recall that we have assumed

that the given singular values satisfy (1.5). There is no difficulty in generalizing all our results to

an arbitrary set of given positive singular values. Let {ck}, {Uk}, {Vk}, {Xk}, {Yk}, and {Jk} be

generated by the Newton-type method with initial point c0. Let EUk
and EVk

be defined by (2.5)-(2.6)

with {U = Uk} and {V = Vk} respectively. Then we have the following lemma.

Lemma 3.1. There exist two numbers δ ∈ (0, 1) and γ ∈ [1, +∞) such that for any k ≥ 0 and

[U(c∗) V (c∗)] ∈ W(c∗) with max{∥EUk
∥, ∥EVk

} < δ, the following assertions hold:

(i) ∥ck+1 − c∗∥ ≤ γ∥J−1
k ∥(∥EUk

∥2 + ∥EVk
∥2), if J−1

k exists;

(ii) max{∥Uk+1 − Uk∥, ∥Vk+1 − Vk∥} ≤ γ(∥ck+1 − c∗∥+ ∥EUk
∥+ ∥EVk

∥), if ck+1 ∈ B(c∗, δ);

(iii) max{∥EUk+1
∥, ∥EVk+1

∥} ≤ γ[∥ck+1 − c∗∥+ (∥EUk
∥+ ∥EVk

∥)2], if ck+1 ∈ B(c∗, δ).

Proof. Let {X̃k} and {Ỹk} be the skew-symmetric matrices defined by (2.4) with {U = Uk} and

{V = Vk} respectively. By Lemma 2.7, let δ1 ∈ (0, 1) and γ1 ∈ [1, +∞) be such that for any k ≥ 0,

∥X̃k∥F ≤ γ1∥EUk
∥, ∥X̃ [s]U

k ∥F ≤ γ1∥EUk
∥2, ∥X̃ [t]L

k ∥F ≤ γ1∥EUk
∥2, (3.6)

∥Ỹk∥F ≤ γ1∥EVk
∥, ∥Ỹ [s]U

k ∥F ≤ γ1∥EVk
∥2, ∥Ỹ [t]L

k ∥F ≤ γ1∥EVk
∥2, (3.7)
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when max{∥EUk
∥, ∥EVk

} < δ1. Let α the positive number determined in Lemma 2.3. Write

η1 := (n2 − s2 − t2) max
s≤i<n−t

{
1

σ∗
i+1 − σ∗

i

,
1

σ∗
i

}
, η2 := max {2η1α, 4 + 2γ1 + 8γ1η1∥σ∗∥} . (3.8)

Set

γ := max

{
4γ21∥σ∗∥, 9

2

√
nγ1η2

}
and δ := min

{
δ1,

2

3γ

}
. (3.9)

Clearly, δ ∈ (0, 1) and γ ∈ [1, +∞). Below we prove that δ and γ are as desired. For this purpose,

we assume that [U(c∗), V (c∗)] ∈ W(c∗). Let k ≥ 0 be such that max{∥EUk
∥, ∥EVk

∥} < δ. Then one

has by (3.6), (3.7), and (3.9) that

∥X̃k∥F ≤ γ1∥EUk
∥ < γδ < 1 and ∥Ỹk∥F ≤ γ1∥EVk

∥ < γδ < 1.

Thus, by direct computations, we have∥∥∥∥∥
∞∑

m=2

X̃m−2
k

m!

∥∥∥∥∥
F

<
∞∑

m=2

1

m!
≤

∞∑
m=2

1

m(m− 1)
= 1. (3.10)

Similarly, ∥∥∥∥∥
∞∑

m=2

(−Ỹk)m−2

m!

∥∥∥∥∥
F

< 1,

∥∥∥∥∥
∞∑

m=1

(−Ỹk)m−1

m!

∥∥∥∥∥
F

< 2,

∥∥∥∥∥
∞∑

m=0

(−Ỹk)m

m!

∥∥∥∥∥
F

< 3.

Write

Rk := −X̃2
k

( ∞∑
m=2

X̃m−2
k

m!

)
Σ∗

( ∞∑
m=0

(−Ỹk)m

m!

)
−Σ∗Ỹ 2

k

∞∑
m=2

(−Ỹk)m−2

m!
+X̃kΣ

∗Ỹk

∞∑
m=1

(−Ỹk)m−1

m!
. (3.11)

Hence, one has by (3.10)–(3.11) that

∥Rk∥F ≤ (3∥X̃k∥2F + ∥Ỹk∥2F + 2∥X̃k∥F · ∥Ỹk∥F ) · ∥Σ∗∥F ≤ 4(∥X̃k∥2F + ∥Ỹk∥2F ) · ∥Σ∗∥F . (3.12)

It follows from (2.2), (3.6), (3.7), and (3.12) that

∥Rk∥F ≤ 4γ21∥σ∗∥(∥EUk
∥2 + ∥EVk

∥2) ≤ γ(∥EUk
∥2 + ∥EVk

∥2), (3.13)

where the last inequality holds because of the definition of γ in (3.9). On the other hand, noting that

eX̃k := UT
k Ũ(c∗), eỸk := V T

k Ṽ (c∗), and [Ũ(c∗), Ṽ (c∗)] ∈ W(c∗), we derive

eX̃kΣ∗e−Ỹk = UT
k A(c

∗)Vk. (3.14)

Thus, by (3.11) and the fact of eX =
∞∑

m=0

Xm

m! , we can write (3.14) into the form

Σ∗ + X̃kΣ
∗ − Σ∗Ỹk = UT

k A(c
∗)Vk +Rk, (3.15)

The diagonal equalities of (3.15) are

(uk
i )

TA(c∗)vk
i − σ∗

i = [Rk]ii, 1 ≤ i ≤ n. (3.16)
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Hence, by the definitions of σ∗, Jk, b
k, and A(c∗), we get from (3.16) that

Jkc
∗ + bk − σ∗ = diag(Rk)

Substituting this from (3.3), one has

Jk(c
k+1 − c∗) = diag(Rk).

Therefore, assertion (i) is seen to hold by (3.13).

For the proof of assertions (ii) and (iii), we assume further that ck+1 ∈ B(c∗, δ) (and so ∥ck+1 −
c∗∥ < δ). The estimates of ∥X̃k − Xk∥, ∥Xk∥, and

∥∥∥(I − 1
2Xk

)−1
∥∥∥ are needed first. Indeed, using

(3.15) and applying Lemma 2.5 (to X̃k, Ỹk, U
T
k A(c

∗)Vk +Rk − Σ∗ in place of H, K and Z), one has

that

[X̃k]ij =
(uk

i )
TA(c∗)vk

j + [Rk]ij

σ∗
j

, n− t+ 1 ≤ i ≤ n, 1 ≤ j ≤ n− t

and

[X̃k]ij =
σ∗
j [(u

k
i )

TA(c∗)vk
j + [Rk]ij ] + σ∗

i [(u
k
j )

TA(c∗)vk
i + [Rk]ji]

(σ∗
j )

2 − (σ∗
i )

2
, s+1 ≤ i ≤ n−t, 1 ≤ j ≤ n−t, i > j.

This together with the formulation of Xk in the Newton-type method yields that

[X̃k]ij − [Xk]ij =
(uk

i )
T∆k+1v

k
j + [Rk]ij

σ∗
j

, n− t+ 1 ≤ i ≤ n, 1 ≤ j ≤ n− t, (3.17)

and

[X̃k]ij − [Xk]ij

=
σ∗
j (u

k
i )

T∆k+1v
k
j + σ∗

i (u
k
j )

T∆k+1v
k
i + σ∗

j [Rk]ij + σ∗
i [Rk]ji

(σ∗
j )

2 − (σ∗
i )

2
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j.

(3.18)

where and in sequel ∆k+1 := A(c∗)−A(ck+1). Note that {uk
i }ni=1 and {vk

i }ni=1 are orthonormal and

that, by Lemma 2.3,

∥∆k+1∥ ≤ α∥ck+1 − c∗∥.

One has by (3.17) and (3.18) that

|[X̃k]ij − [Xk]ij | ≤
1

σ∗
j

(
α∥ck+1 − c∗∥+ ∥Rk∥F

)
, n− t+ 1 ≤ i ≤ n, 1 ≤ j ≤ n− t, (3.19)

|[X̃k]ij− [Xk]ij | ≤
1

σ∗
j − σ∗

i

(
α∥ck+1 − c∗∥+ ∥Rk∥F

)
, s+1 ≤ i ≤ n−t, 1 ≤ j ≤ n−t, i > j. (3.20)

Since [Xk]ij = 0 for each 1 ≤ i, j ≤ s or n− t+ 1 ≤ i, j ≤ n, we have by (2.1), (3.19), (3.20) and the

definition of η1 that

∥X̃k −Xk∥ ≤ ∥X̃k −Xk∥F ≤ ∥X̃ [s]U
k ∥F + ∥X̃ [t]L

k ∥F + η1
(
α∥ck+1 − c∗∥+ ∥Rk∥F

)
,

Combining this with (3.6) and (3.13), we further derive that

∥X̃k −Xk∥ ≤ 2γ1∥EUk
∥2 + η1

[
α∥ck+1 − c∗∥+ 4γ21∥σ∗∥(∥EUk

∥2 + ∥EVk
∥2)

]
, (3.21)
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∥Xk∥ ≤ γ1∥EUk
∥+ 2γ1∥EUk

∥2 + η1
[
α∥ck+1 − c∗∥+ 4γ21∥σ∗∥(∥EUk

∥2 + ∥EVk
∥2)

]
.

Thus, by the fact of γ1 max{∥EUk
∥, ∥EVk

∥} ≤ γ1δ < 1, one has

∥Xk∥ ≤ η1α∥ck+1 − c∗∥+ (2 + γ1 + 4γ1η1∥σ∗∥)∥EUk
∥+ 4γ1η1∥σ∗∥ · ∥EVk

∥; (3.22)

hence,

∥Xk∥ ≤ η2
2

(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)
≤ γ

2

(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)

(3.23)

(noting that γ ≥ η2 = max{2η1α, 4 + 2γ1 + 8γ1η1∥σ∗∥}). Since max{∥EUk
∥, ∥EVk

∥} ≤ δ and

∥ck+1 − c∗∥ ≤ δ, we derive further by (3.9) and (3.22) that ∥Xk∥ ≤ 1. Therefore, applying Lemma

2.1 (for A = I − 1
2Xk and B = I), one has∥∥∥(I − 1

2Xk

)−1
∥∥∥ ≤ 1

1− 1
2∥Xk∥

≤ 2. (3.24)

Consequently, the estimates of ∥X̃k − Xk∥, ∥Xk∥, and
∥∥∥(I − 1

2Xk

)−1
∥∥∥ are complete. By a similar

argument, we can have the following estimates:

∥Ỹk − Yk∥ ≤ 2γ1∥EVk
∥2 + η1

[
α∥ck+1 − c∗∥+ 4γ21∥σ∗∥(∥EUk

∥2 + ∥EVk
∥2)

]
,

∥Yk∥ ≤ η2
2

(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)
≤ γ

2

(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)
, (3.25)

and ∥∥∥(I − 1
2Yk

)−1
∥∥∥ ≤ 2. (3.26)

Now we offer the estimates of ∥Uk+1 − Uk∥, ∥Vk+1 − Vk∥, ∥EUk+1
∥, and ∥EVk+1

∥. Note by (3.4)

that

Uk+1 − Uk = Uk[(I +
1
2Xk)− (I − 1

2Xk)](I − 1
2Xk)

−1 = UkXk(I − 1
2Xk)

−1.

This together with (3.23), (3.24), and the orthonormal property of Uk gives rise to

∥Uk+1 − Uk∥ ≤ γ
(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)
.

Similarly, using (3.5), (3.25), and (3.26), we obtain

∥Vk+1 − Vk∥ ≤ γ
(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)
.

Thus, assertion (ii) holds. It remains to prove assertion (iii). The arguments for the estimates of

EUk+1
and EVk+1

are similar and so we only provide the proof for the estimate of EUk+1
. For this,

note by (3.4) and the definition of X̃k that

Uk+1 − Ũ(c∗) = Uk[(I +
1
2Xk)(I − 1

2Xk)
−1 − eX̃k ] = Uk[(I +

1
2Xk)− eX̃k(I − 1

2Xk)](I − 1
2Xk)

−1.

Then, using the equality eX̃k =
∞∑

m=0

X̃m
k

m! , it is easy to check that

Uk+1 − Ũ(c∗) = Uk

[
Xk − X̃k + 1

2X̃kXk −
(
X̃2

k

∞∑
m=2

X̃m−2
k

m!

)(
I − 1

2
Xk

)](
I − 1

2
Xk

)−1

= Uk(Xk − X̃k)(I − 1
2Xk)

−1 + 1
2UkX̃kXk(I − 1

2Xk)
−1 − UkX̃

2
k

∞∑
m=2

X̃m−2
k

m!
.

(3.27)
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Noting that Uk is orthonormal, we deduce from (3.27), (3.10), (3.24), and (2.1) that

∥Uk+1 − Ũ(c∗)∥ ≤ 2∥Xk − X̃k∥+ ∥X̃k∥ · ∥Xk∥+ ∥X̃k∥2 ≤ 2∥Xk − X̃k∥+ ∥X̃k∥F · ∥Xk∥+ ∥X̃k∥2F .

Thus, one has by (3.6), (3.21), and (3.23) that

∥Uk+1 − Ũ(c∗)∥ ≤ (4γ1 + γ21 + 8γ21η1∥σ∗∥+ 1
2γ1η2)(∥EUk

∥+ ∥EVk
∥)2

+(2η1α+ 1
2η2)∥c

k+1 − c∗∥. (3.28)

Recall from (3.8) that η2 = max{2η1α, 4 + 2γ1 + 8γ1η1∥σ∗∥}. We then have by (3.28) that

∥Uk+1 − Ũ(c∗)∥ ≤ 3

2
γ1η2[(∥EUk

∥+ ∥EVk
∥)2 + ∥ck+1 − c∗∥] (3.29)

(noting that γ1 ≥ 1). To proceed, write Uk+1 := [U
(1)
k+1, U

(2)
k+1, U

(3)
k+1] where U

(1)
k+1 ∈ Rn×s and

U
(3)
k+1 ∈ Rn×t. Since (I −ΠU,i)Ũ

(i)(c∗) = 0 and ∥I −ΠU,i∥ ≤ 1 hold for i = 1, 3, one has

∥(I −ΠU,i)U
(i)
k+1∥ = ∥(I −ΠU,i)(U

(i)
k+1 − Ũ (i)(c∗))∥ ≤ ∥Uk+1 − Ũ(c∗)∥, i = 1, 3. (3.30)

Noting that EUk+1
= [(I−ΠU,1)U

(1)
k+1, U

(2)
k+1−U (2)(c∗), (I−ΠU,3)U

(3)
k+1], we obtain from (2.1), (3.29),

and (3.30) that

∥EUk+1
∥ ≤ ∥(I −ΠU,1)U

(1)
k+1∥F + ∥U (2)

k+1 − U (2)(c∗)∥F + ∥(I −ΠU,3)U
(3)
k+1∥F

≤ 3
√
n∥Uk+1 − Ũ(c∗)∥.

(3.31)

Therefore, thanks to (3.29) and (3.31), one sees that

∥EUk+1
∥ ≤ γ[∥ck+1 − c∗∥+ (∥EUk

∥+ ∥EVk
∥)2];

hence, assertion (iii) holds. The proof is complete.

Now we present a convergence result of the Newton-type method which shows that the sequence

{ck} generated by the Newton-type method converges quadratically to a solution of the ISVP (1.2).

For this purpose, we require a basic assumption: ∂Q|Sf(c
∗) is nonempty, which is guaranteed by

Lemma 2.8 if c∗ ∈ clS (actually, the nonemptiness of ∂Q|Sf(c
∗) is equivalent that c∗ ∈ clS). Further-

more, we also require the assumption that the initial point c0 ∈ S, so that each Jk generated by the

Newton-type method is close to ∂Q|Sf(c
∗) (see the proof for Theorem 3.1 below).

Theorem 3.1. Let c∗ ∈ clS such that the matrix A(c∗) has singular values given by (1.5). Suppose

that each J ∈ ∂Q|Sf(c
∗) is nonsingular. Then there exist δ ∈ (0, 1) such that for each c0 ∈ B(c∗, δ)∩S,

the sequence {ck} generated by the Newton-type method with initial point c0 converges quadratically

to c∗.

Proof. By Lemma 3.1, let δ1 ∈ (0, 1) and γ ∈ [1, +∞) such that for any k ≥ 0 and [U(c∗) V (c∗)] ∈
W(c∗), if max{∥EUk

∥, ∥EVk
} < δ1, the assertions (i)–(iii) in Lemma 3.1 hold with δ = δ1. Moreover,

thanks to Lemmas 2.6 and 2.10, we assume without loss of generality that for any c ∈ B(c∗, δ1), (2.9)

and the assertions (i)–(iv) in Lemma 2.6 hold. Write

q := 6
√
nγ.
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Take δ such that

0 < δ < min

δ1
q
,

1

4qγ(1 + γ2)
,

1

6nγ2q ·max
j

∥Aj∥

 . (3.32)

Clearly, δ ∈ (0, 1). Below we shall show that δ is as desired. For this purpose, let c0 ∈ B(c∗, δ)
∩
S.

Then, thanks to Lemma 2.9 and the definition of J0, one has that ∂Q|Sf(c
0) = {f ′(c0)} = {J0}. In

addition, by Lemma 2.10 (as δ < 2δ1
q ≤ δ1), we have

∥J−1
0 ∥ ≤ γ. (3.33)

It suffices to prove that for any k = 0, 1, . . . ,

∥ck − c∗∥ ≤ qδ

(
1

2

)2k

(3.34)

and

max{∥EUk
∥, ∥EVk

∥} ≤ qδ

(
1

2

)2k

, (3.35)

We proceed by mathematical induction. Since ∥c0 − c∗∥ < δ and q ≥ 2, (3.34) is trivial for k = 0.

Noting that EU0
= [(I −ΠU,1)U

(1)
0 , U

(2)
0 −U (2)(c∗), (I −ΠU,3)U

(3)
0 ], one has by (2.1) and Lemma 2.6

that

∥EU0∥ ≤ ∥EU0∥F ≤ ∥(I −ΠU,1)U
(1)
0 ∥F + ∥U (2)

0 − U (2)(c∗)∥F + ∥(I −ΠU,3)U
(3)
0 ∥F ≤ 3

√
nγδ =

1

2
qδ,

where the equality holds because of the definition of q. Similarly, one can prove that ∥EV0∥ ≤ 1
2qδ;

hence, (3.35) is shown for k = 0. Assume that (3.34) and (3.35) hold for all k ≤ l. Then, by (3.32),

∥ck − c∗∥ ≤ 1

2
qδ < δ1 and max{∥EUk

∥, ∥EVk
∥ ≤ 1

2
qδ < δ1, for each k ≤ l. (3.36)

Thus, applying Lemma 3.1, we get the following two assertions:

J−1
k exists ⇒ ∥ck+1 − c∗∥ ≤ γ∥J−1

k ∥(∥EUk
∥2 + ∥EVk

∥2), for each k ≤ l, (3.37)

and

max{∥Uk+1 − Uk∥, ∥Vk+1 − Vk∥} ≤ γ(∥ck+1 − c∗∥+ ∥EUk
∥+ ∥EVk

∥), for each k ≤ l − 1. (3.38)

Noting that

∥Ul − U0∥ ≤
l−1∑
k=0

∥Uk+1 − Uk∥ and ∥Vl − V0∥ ≤
l−1∑
k=0

∥Vk+1 − Vk∥,

we have by (3.38), (3.34) (with k ≤ l − 1), and (3.35) (with k ≤ l − 1) that

max{∥Ul − U0∥, ∥Vl − V0∥} ≤ 3γqδ

[
1

2
+

(
1

2

)2

+

(
1

2

)22

+ · · ·+
(
1

2

)2l−1]
.

Since 2n ≥ n+ 1 for each n ≥ 0, it follows that

max{∥Ul − U0∥, ∥Vl − V0∥} ≤ 3γqδ

[
1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · ·+
(
1

2

)l
]
≤ 3γqδ.
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This together with the definition of δ yields

2nγ ·max
j

∥Aj∥ ·max{∥Ul − U0∥, ∥Vl − V0∥} ≤ 6nγ2qδ ·max
j

∥Aj∥ <
1

2
. (3.39)

Moreover, by the definition of [Jl]ij (cf. (3.2)), one has∣∣[Jl]ij − [J0]ij
∣∣ = ∣∣(ul

i − u0
i )

TAjv
l
i + (u0

i )
TAj(v

l
i − v0

i )
∣∣ ≤ 2∥Aj∥ ·max{∥ul

i − u0
i ∥, ∥vl

i − v0
i ∥}.

Then, thanks to (2.1), we get that

∥Jl − J0∥ ≤ ∥Jl − J0∥F ≤ 2nmax
j

∥Aj∥ ·max{∥Ul − U0∥, ∥Vl − V0∥}.

It follows from (3.33) and (3.39) that

∥J−1
0 ∥ · ∥Jl − J0∥ ≤ 2nγ ·max

j
∥Aj∥ ·max{∥Ul − U0∥, ∥Vl − V0∥} <

1

2
.

Thus, applying Lemma 2.1 (for A = Jl and B = J0) and using (3.33) again, we obtain

∥J−1
l ∥ ≤ ∥J−1

0 ∥
1− ∥J−1

0 ∥ · ∥Jl − J0∥
< 2γ.

Then, by implication (3.37) and the inductive assumption (3.35) with k = l, we obtain

∥cl+1 − c∗∥ ≤ 2γ2(∥EUl
∥2 + ∥EVl

∥2) ≤ 4γ2(qδ)2
(
1

2

)2l+1

. (3.40)

Thus, (3.34) holds for k = l + 1 and moreover ∥cl+1 − c∗∥ ≤ δ1 as qδ ≤ min{δ1, 1/(4γ2)} by (3.32)

and the fact of γ ≥ 1. Hence, noting (3.36), Lemma 3.1 (ii) and (iii) (with k = l) are applicable to

concluding that

max{∥Ul+1 − Ul∥, ∥Vl+1 − Vl∥} ≤ γ(∥cl+1 − c∗∥+ ∥EUl
∥+ ∥EVl

∥)

and

max{∥EUl+1
∥, ∥EVl+1

∥} ≤ γ[∥cl+1 − c∗∥+ (∥EUl
∥+ ∥EVl

∥)2]
Therefore, we derive from (3.40) and the inductive assumption (3.35) (with k = l) that

max{∥EUl+1
∥, ∥EVl+1

∥} ≤ 4γ(1 + γ2)(qδ)2
(
1

2

)2l+1

.

Thus, thanks to (3.32), (3.35) holds for k = l + 1 and the proof is complete.

Theorems 3.2 and 3.3 below, the proofs of which are similar to that of Theorems 3.1, show that

the condition c∗ ∈ clS is not required if the nonsingularity assumption for each J ∈ ∂Q|Sf(c
∗) is

replaced by the nonsingularity assumption for each J ∈ ∂Bf(c
∗) or each J ∈ ∂Qf(c

∗).

Theorem 3.2. Let c∗ ∈ Rn be such that the matrix A(c∗) has singular values given by (1.5). Suppose

that each J ∈ ∂Bf(c
∗) is nonsingular. Then there exist δ ∈ (0, 1) such that for each c0 ∈ B(c∗, δ)∩S,

the sequence {ck} generated by the Newton-type method with initial point c0 converges quadratically

to c∗.

Theorem 3.3. Let c∗ ∈ Rn be such that the matrix A(c∗) has singular values given by (1.5). Suppose

that each J ∈ ∂Qf(c
∗) is nonsingular. Then there exist δ ∈ (0, 1) such that for each c0 ∈ B(c∗, δ)

∩
S,

the sequence {ck} generated by the Newton-type method with initial point c0 converges quadratically

to c∗.
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4 An inexact version

In this section, we design an inexact version of the Newton-type method proposed in Section 3 where

the linear system (3.3) is solved inexactly, and establish some convergence results for the inexact

version. In the remainder of the paper, let β ∈ (1, 2].

Algorithm 2. the inexact Newton-type method

1. Given c0 ∈ Rn, compute the singular values {σi(c0)}ni=1, the orthonormal left singular vectors

{ui(c
0)}mi=1 and right singular vectors {vi(c

0)}ni=1 of A(c0). Write

U0 := [u0
1, . . . ,u

0
m] = [u1(c

0), . . . ,um(c0)],

V0 := [v0
1, . . . ,v

0
n] = [v1(c

0), . . . ,vn(c
0)],

σ0 := (σ1(c
0), . . . , σn(c

0))T .

2. For k = 0, 1, 2, . . . until convergence, do:

(a) Same as (a) in Algorithm 1.

(b) Solve (3.3) to find ck+1 such that the residual rk defined by

rk := Jkc
k+1 + bk − σ∗ (4.1)

satisfies that

∥rk∥ ≤ ∥σk − σ∗∥β

∥σ∗∥β
, β ∈ (1, 2]. (4.2)

(c) Same as (c) in Algorithm 1.

(d) Same as (d) in Algorithm 1.

(e) Same as (e) in Algorithm 1.

(f) Compute σk+1 := (σk+1
1 , . . . ,σk+1

n )T by

σk+1
i = (uk+1

i )TA(ck+1)vk+1
i , 1 ≤ i ≤ n. (4.3)

To establish the convergence results of the inexact Newton-type method, we also need the following

lemma. For this purpose, let {ck}, {Uk}, {Vk}, {Xk}, {Yk}, and {Jk} be generated by the inexact

Newton-type method with initial point c0.

Lemma 4.1. There exist two numbers δ ∈ (0, 1) and γ ∈ [1, +∞) such that for any k ≥ 0 and

[U(c∗) V (c∗)] ∈ W(c∗) with max{∥EUk
∥, ∥EVk

} < δ, the following assertions hold:

(i) ∥ck+1 − c∗∥ ≤ γ∥J−1
k ∥(∥EUk

∥2 + ∥EVk
∥2 + ∥σk − σ∗∥β), if J−1

k exists;

(ii) max{∥EUk+1
∥, ∥EVk+1

∥} ≤ γ[∥ck+1 − c∗∥+ (∥EUk
∥+ ∥EVk

∥)2], if ck+1 ∈ B(c∗, δ);

(iii) max{∥Uk+1 − Uk∥, ∥Vk+1 − Vk∥} ≤ γ(∥ck+1 − c∗∥+ ∥EUk
∥+ ∥EVk

∥), if ck+1 ∈ B(c∗, δ);

(iv) ∥σk − σ∗∥ ≤ γ(∥ck − c∗∥+ ∥EUk
∥2 + ∥EVk

∥2).
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Proof. The proof for assertions (i)-(iii) is very similar to that for Lemma 3.1. Below we show assertion

(iv). To do this, as in the proof for Lemma 3.1, let {X̃k} and {Ỹk} be the skew-symmetric matrices

defined by (2.4) with {U = Uk} and {V = Vk} respectively, and let α > 0, δ1 ∈ (0, 1), γ1 ∈ [1, +∞)

be the numbers determined by Lemmas 2.3 and 2.7, respectively. Let Rk be defined by (3.11). Then,

one can check as in the proof for Lemma 3.1 that (3.13) and (3.16) also hold. Thus, by Lemma 2.3

and using the orthogonality of {uk
i }ni=1 and {vk

i }ni=1, one has that

|(uk
i )

TA(ck)vk
i − σ∗

i | = ∥(uk
i )

T (A(ck)−A(c∗))vk
i + (uk

i )
TA(c∗)vk

i − σ∗
i ∥

≤ α∥ck − c∗∥+ 4γ21∥σ∗∥(∥EUk
∥2 + ∥EVk

∥2).

This, together with the definitions of σk, σ∗ in (4.3) and (2.2), gives that

∥σk − σ∗∥ ≤ γ(∥ck − c∗∥+ (∥EUk
∥2 + ∥EVk

∥2)),

where γ := max{
√
nα, 4

√
nγ21∥σ∗∥}, and assertion (iv) is seen to hold. The proof is complete.

Note the known Lipschitz continuity of σ defined by (2.8); see [12, Corollary 8.6.2]. Then, following

the line for proving Theorem 3.1 and using Lemma 4.1 (where Lemma 3.1 is used), one can establish

the following convergence result for the inexact Newton-type method .

Theorem 4.1. Let c∗ ∈ clS such that the matrix A(c∗) has singular values given by (1.5). Suppose

that each J ∈ ∂Q|Sf(c
∗) is nonsingular. Then there exist δ ∈ (0, 1) such that for each c0 ∈ B(c∗, δ)∩S,

the sequence {ck} generated by the inexact Newton-type method with initial point c0 converges to c∗

and the convergence rate is equivalent to β.

Similarly, we can also present the following two results where the nonsingularity assumption for all

J ∈ ∂Q|Sf(c
∗) is replaced by the nonsingularity assumption for each J ∈ ∂Bf(c

∗) or each J ∈ ∂Qf(c
∗).

Theorem 4.2. Let c∗ ∈ Rn be such that the matrix A(c∗) has singular values given by (1.5). Suppose

that each J ∈ ∂Bf(c
∗) is nonsingular. Then there exist δ ∈ (0, 1) such that for each c0 ∈ B(c∗, δ)∩S,

the sequence {ck} generated by the inexact Newton-type method with initial point c0 converges to c∗

and the convergence rate is equivalent to β.

Theorem 4.3. Let c∗ ∈ Rn be such that the matrix A(c∗) has singular values given by (1.5). Suppose

that each J ∈ ∂Qf(c
∗) is nonsingular. Then there exist δ ∈ (0, 1) such that for each c0 ∈ B(c∗, δ)

∩
S,

the sequence {ck} generated by the inexact Newton-type method with initial point c0 converges to c∗

and the convergence rate is equivalent to β.

5 Numerical tests

In this section, we report some numerical tests to illustrate the convergence performance of the

proposed Newton-type methods (including the Newton-type and inexact Newton-type methods). Our

aim is, for the square inverse singular value problems with multiple and/or zero singular values, to

illustrate the validity of the Newton-type methods. All the tests were implemented in MATLAB 7.0

on a Genuine Intel(R) PC with 1.6 GHz CPU.
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Let {Ti}ni=1 be Toeplitz matrices given by

T1 = I, T2 =



0 1 0 . . . 0

1 0 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 . . . 0 1 0


, . . . , Tn =



0 0 . . . 0 1

0
. . .

. . .
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

1 0 . . . 0 0


.

Let H1, H2 ⊂ O(n) generated by Matlab-provided random function. Define A0 = 0 and {Ai}ni=1 ⊂
Rn×n as follows

Ai = H1TiH2, for each i = 1, 2, . . . , n,

where 0 is a zero matrix of appropriate size. Here we focus on the following three cases: (a) m = n =

50; (b) m = n = 100; (c) m = n = 200. To present multiple and zero singular values, we first generate

in each test a vector ĉ∗ randomly such that, for some integers p and q, |σp+1(c̃
∗) − σp(c̃

∗)| < 5e − 5

and σq(c̃
∗) < 1e− 4, where c̃∗ := ĉ∗ ∗ 10−4. Set

σ∗
i =


σp(c̃

∗), i = p, p+ 1;

0, i = q;

σi(c̃
∗), otherwise.

Then we choose {σ∗
i }ni=1 as the prescribed singular values.

Since both the Newton-type and inexact Newton-type methods are locally convergent, c0 is formed

by chopping the components of c̃∗ to five decimal places for the case (a), and to six decimal places

for the cases (b), (c). For each case, ten test problems are constructed. In both algorithms, we

need to solve three linear systems: the approximate Jacobian equation (3.3), systems (3.4) and (3.5).

Note that, in the Newton-type method, the approximate Jacobian equation (3.3) is required to be

solved exactly. Thus, one may solve it by the direct method or choose an iterative method and

solve up it to machine precision eps. Recall that the matrices on the left-hand side of (3.4) and

(3.5) approach the identity matrix in the limit (cf. (3.23) and (3.25)). Hence one can expect to

solve them accurately by iterative methods in just a few iterations. While in the inexact Newton-

type method, the approximate Jacobian equation (3.3) is only required to be solved inexactly and

so iterative methods can be considered here to reduce the computational cost of solving (3.3). As in

[3], we choose the QMR method [10] via the MATLAB QMR function as the iterative method, where

the maximal number of iterations is set to be 1000. In particular, to speed up the convergence, we

use Matlab-provided ILU (Incomplete LU factorization) preconditioner: LUINC(A,drop-tolerance) in

solving (3.3) since the ILU preconditioner is one of the most versatile preconditioners for unstructured

matrices (cf. [9], [14]). We use ck and right-hand side vector as the initial guesses for the approximate

Jacobian equation (3.3) and systems (3.4)–(3.5) respectively. The inner loop stopping tolerance for

(3.3) in the inexact Newton-type method is given by (4.2). While systems (3.4), (3.5) and (3.3) in

the Newton-type method are all solved up to machine precision eps. Finally, for both algorithms, the

outer iteration is stopped when

∥UT
k A(c

k)Vk − Σ∗∥F < 10−13.

We now report our experimental results. Table 1 illustrates the values of dk := ∥UT
k A(c

k)Vk−Σ∗∥F
for one of the test in case (a), where the approximate Jacobian matrix (3.3) is solved by the QMR
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method mentioned above. While the convergence performance averaged over the ten test problems for

all cases are illustrated in Tables 2 and 3, where “T”, “No”, “Ni” represent respectively the averaged

CPU time, the averaged numbers of outer iterations and the total ones of inner iterations required for

solving (3.3). It should be noted that, in Table 2, the direct method (denoted by “DIRECT”) and the

QMR method (denoted by “QMR”) are both adopted for solving (3.3) of the Newton-type method.

Moreover, in Table 3, “I” means no preconditioner is used and “P” means the MILU-preconditioner

is used in the QMR iterative method. We use “+∞” in the numbers of inner iterations to denote

that the methods fails to converge (see Table 3). Furthermore, since it was shown in Theorem 4.1

that the inexact Newton-type method converges with convergence rate β, we present the convergence

performance of the inexact Newton-type method with different values of β in all tables. To further

illustrate the over-solving problem, we give the convergence history of the inexact Newton-type (with

β = 1.8) and the Newton-type methods in Figure 1 for one test in case (a), in which the logarithm of

the error ∥UT
k A(c

k)Vk−Σ∥ versus the number of inner iterations for solving the approximate Jacobian

equation (3.3) are depicted (each point denotes an outer iteration).

We can see from Table 1 that both the Newton-type and inexact Newton-type methods converge

quadraticallly/superlinearly and that, for the inexact Newton-type method, convergence performance

of larger β are better than that of smaller β on the whole. While from Table 2, we can see that the

CPU time and the outer iteration numbers of the inexact Newton-type method with β ≥ 1.6 are fewer

than that of the Newton-type method. As shown in Table 3 and Figure 1, in terms of Ni, the inexact

Newton-type method is more effective than the Newton-type method and the over-solving problem

of the Newton-type method is much significant than the inexact Newton-type method especially for

β = 1.8. We also note that for the same method or the same β in the inexact Newton-type method,

the MILU-preconditioner is quite effective in speeding up the solving of the approximate Jacobian

equation.

Table 1: Convergence performance of Algorithms 1 and 2

Algorithm2
k Algorithm 1

β = 1.2 β = 1.4 β = 1.6 β = 1.8 β = 2.0

0 3.21e-04 3.21e-04 3.21e-04 3.21e-04 3.21e-04 3.21e-04

1 7.32e-06 8.67e-05 8.67e-05 8.23e-05 8.09e-05 7.73e-05

2 3.16e-08 5.92e-06 2.92e-06 2.58e-06 2.08e-06 1.93e-06

3 8.71e-12 1.83e-06 1.39e-08 2.91e-09 2.81e-09 2.77e-09

4 2.28e-16 8.96e-08 7.17e-11 1.51e-14 7.67e-15 4.37e-15

5
... 1.28e-08 1.20e-16

...
...

...

6
... 1.07e-10

...
...

...
...

7
... 1.10e-13

...
...

...
...

8
... 5.29e-16

...
...

...
...

9
...

...
...

...
...

...
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Table 2: Averaged total numbers of outer iterations No and CPU time T

Algorithm1 Algorithm2

DIRECT QMR β = 1.2 β = 1.4 β = 1.6 β = 1.8 β = 2.0

No 4.40 4.40 7.40 5.40 4.60 4.40 4.40
(a)

T 5.95 6.21 6.90 5.03 5.01 4.75 4.94

No 4.30 4.30 8.20 5.70 5.00 4.30 4.30
(b)

T 1.60e+ 01 1.49e+ 01 2.48e+ 01 1.70e+ 01 1.49e+ 01 1.13e+ 01 1.41e+ 01

No 5.10 5.10 1.04e+ 01 7.50 5.50 5.10 5.10
(c)

T 4.66e+ 01 4.71e+ 01 9.32e+ 01 7.10e+ 01 5.03e+ 01 4.17e+ 1 4.38e+ 01

Table 3: Averaged total numbers of inner iterations Ni

Algorithm 1 Algorithm 2

β = 1.2 β = 1.4 β = 1.6 β = 1.8 β = 2.0

P 4.69e+ 01 1.83e+ 01 1.62e+ 01 1.51e+ 01 1.46e+ 01 2.07e+ 01
(a)

I 8.49e+ 02 7.08e+ 02 5.23e+ 02 4.76e+ 02 4.51e+ 02 4.91e+ 02

P 1.12e+ 02 5.43e+ 01 5.11e+ 01 4.80e+ 01 4.54e+ 01 5.53e+ 01
(b)

I 4.04e+ 03 3.85e+ 03 3.20e+ 03 2.73e+ 03 2.48e+ 03 2.74e+ 03

P 1.09e+ 03 5.88e+ 02 5.34e+ 02 4.68e+ 02 4.62e+ 02 5.40e+ 02
(c)

I +∞ +∞ +∞ +∞ +∞ +∞

0 5 10 15 20 25 30 35 40 45
−18

−16

−14

−12

−10

−8

−6

−4

−2

Number of inner iterations

lo
g
10
‖
U

T k
A
(c

k
)V

k
−
Σ
∗
‖

 

 
inexact Newton-type method (β = 1.8)
exact Newton-type method

1: Convergence history of one test.
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6 Conclusions

We proposed in this paper a Newton-type method (and its inexact version) for solving the ISVP (1.2)

with multiple and/or zero singular values and established the corresponding quadratic/superlinear

convergence results for the special case when m = n.

Recall that an exact/inexact Newton-type method was proposed in [27] for solving the ISVP (1.2)

with the multiple but positive singular values, and its quadratic/superlinear convergence was claimed

[27, Theorem 3.1] there. However, there is a fatal gap in the proof for Theorem 3.1 there. Indeed,

the main idea for proving [27, Theorem 3.1] is to estimate ∥ck+1 − ck∥ to show that the generated

sequence {ck} is a Cauchy sequence, which used unavoidably the following equality:

Σ∗ +XkΣ
∗ − Σ∗Yk = UT

k A(c
k+1)Vk −Dk, (6.1)

where Dk := Diag(rk1 , r
k
2 , . . . , r

k
n) ∈ Rm×n and rki (1 ≤ i ≤ n) is the i-th component of the residual

control vector rk (see [27, Remark 3.1 and page 149, lines 20-21] for details). Unfortunately, equality

(6.1) is not true in general if s > 1 even in the case when m = n because, by the definitions of Xk

and Yk in the algorithm,

[Σ∗+XkΣ
∗−Σ∗Yk]ij = −[UT

k A(c
k+1)Vk]ji ̸= [UT

k A(c
k+1)Vk−Dk]ij , for each 1 ≤ i < j ≤ s, (6.2)

in general. Moreover, we remark that the technique used in [27] cannot be adopted to treat the

distinct case with the zero singular values (i.e., (1.5) is satisfied with s = 1 and t = 1) as the same

gap appears because

[Σ∗ +XkΣ
∗ − Σ∗Yk]ij = 0 ̸= [UT

k A(c
k+1)Vk −Dk]ij , for each n− t+ 1 ≤ i, j ≤ n. (6.3)

Actually, we don’t know whether [27, Theorem 3.1] is still true or not in the case when m > n.

The technique used in this paper for proving the convergence results is different from the one used

in [27]. Indeed, we show the convergence of the sequence {ck} in this paper for the case when m = n

via estimating directly ∥ck − c∗∥, rather than ∥ck+1 − ck∥, to avoid using the equality (6.1) but using

the key Lemmas 2.5 and 2.7 to get the estimation for ∥X̃k −Xk∥. It seems that this technique does

not work for the case when m > n because, for each n − t+ 1 ≤ i, j ≤ m − t, |[X̃k −Xk]ij | can not

be estimated as done for other components of X̃k − Xk (even though Lemmas 2.5 and 2.7 could be

extended to the case when m > n).

Acknowledgments. We are grateful to the referees for their valuable comments which help us

to improve the original presentation of the paper.
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